Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1987 May;91(1):205–212. doi: 10.1111/j.1476-5381.1987.tb09000.x

Complex effects of Gillichthys urotensin II on rat aortic strips.

A Gibson
PMCID: PMC1853480  PMID: 2885055

Abstract

The aim of this study was to determine whether the fish neuropeptide, Gillichthys urotensin II (GUII), possesses significant biological activity on rat aortic strips. On intact strips, pre-contracted by noradrenaline (100 nM), low concentrations (0.1-0.5 nM) of GUII produced relaxations, while higher concentrations (1-10 nM) caused further contraction. On strips rubbed to remove endothelial cells, relaxations were absent but contractile responses to higher concentrations of GUII remained. GUII (0.02-10 nM) produced dose-related contractions of quiescent, intact aortic strips. These contractions consisted of two components, tonic and phasic, and were potentiated in rubbed strips and in the presence of the antioxidant drug hydroquinone (10 microM). Mepacrine (40 microM) and p-bromophenacyl bromide (50 microM) completely abolished contractions to GUII, but indomethacin (10 microM) and nordihydro-guaiaretic acid (10 microM) were without effect. The phasic, but not the tonic, component of the contractile response was inhibited by nitrendipine (200 nM), and was absent in bathing medium from which Ca2+ had been omitted. Addition of EGTA (2 mM) to Ca2+-free bathing medium abolished the residual tonic component. GUII-induced contractions were completely abolished by the calmodulin antagonists trifluoperazine (50 microM) and W-7 (30 microM). It is concluded that GUII, previously considered devoid of significant activity on mammalian tissues, produces potent endothelium-dependent relaxations and endothelium-independent contractions of rat aorta, and possible mechanisms underlying each response are discussed.

Full text

PDF
205

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashoori F., Takai A., Tomita T. The response of non-pregnant rat myometrium to oxytocin in Ca-free solution. Br J Pharmacol. 1985 Jan;84(1):175–183. [PMC free article] [PubMed] [Google Scholar]
  2. Bern H. A., Pearson D., Larson B. A., Nishioka R. S. Neurohormones from fish tails: the caudal neurosecretory system. I. "Urophysiology" and the caudal neurosecretory system of fishes. Recent Prog Horm Res. 1985;41:533–552. doi: 10.1016/b978-0-12-571141-8.50016-0. [DOI] [PubMed] [Google Scholar]
  3. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  4. Casteels R., Raeymaekers L., Suzuki H., Van Eldere J. Tension response and 45Ca release in vascular smooth muscle incubated in Ca-free solution. Pflugers Arch. 1981 Dec;392(2):139–145. doi: 10.1007/BF00581262. [DOI] [PubMed] [Google Scholar]
  5. Flower R. J., Blackwell G. J. The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem Pharmacol. 1976 Feb 1;25(3):285–291. doi: 10.1016/0006-2952(76)90216-1. [DOI] [PubMed] [Google Scholar]
  6. Furchgott R. F. Role of endothelium in responses of vascular smooth muscle. Circ Res. 1983 Nov;53(5):557–573. doi: 10.1161/01.res.53.5.557. [DOI] [PubMed] [Google Scholar]
  7. Gibson A., Bern H. A., Ginsburg M., Botting J. H. Neuropeptide-induced contraction and relaxation of the mouse anococcygeus muscle. Proc Natl Acad Sci U S A. 1984 Jan;81(2):625–629. doi: 10.1073/pnas.81.2.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibson A., Wallace P., Bern H. A. Cardiovascular effects of urotensin II in anesthetized and pithed rats. Gen Comp Endocrinol. 1986 Dec;64(3):435–439. doi: 10.1016/0016-6480(86)90080-8. [DOI] [PubMed] [Google Scholar]
  9. Griffith T. M., Edwards D. H., Lewis M. J., Newby A. C., Henderson A. H. The nature of endothelium-derived vascular relaxant factor. Nature. 1984 Apr 12;308(5960):645–647. doi: 10.1038/308645a0. [DOI] [PubMed] [Google Scholar]
  10. Hofmann S. L., Prescott S. M., Majerus P. W. The effects of mepacrine and p-bromophenacyl bromide on arachidonic acid release in human platelets. Arch Biochem Biophys. 1982 Apr 15;215(1):237–244. doi: 10.1016/0003-9861(82)90300-9. [DOI] [PubMed] [Google Scholar]
  11. Kyger E. M., Franson R. C. Nonspecific inhibition of enzymes by p-bromophenacyl bromide. Inhibition of human platelet phospholipase C and modification of sulfhydryl groups. Biochim Biophys Acta. 1984 Jun 6;794(1):96–103. doi: 10.1016/0005-2760(84)90302-3. [DOI] [PubMed] [Google Scholar]
  12. Levenson J., Simon A. C., Bouthier J., Maarek B. C., Safar M. E. The effect of acute and chronic nicardipine therapy on forearm arterial haemodynamics in essential hypertension. Br J Clin Pharmacol. 1985;20 (Suppl 1):107S–113S. doi: 10.1111/j.1365-2125.1985.tb05151.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MacCannell K. L., Lederis K. Mammalian pharmacology of the fish neuropeptide urotensin I. Fed Proc. 1983 Jan;42(1):91–95. [PubMed] [Google Scholar]
  14. Muramatsu I., Miura A., Fujiwara M., Lederis K. Rat isolated mesenteric artery: a sensitive preparation for the bioassay of urotensin I. Gen Comp Endocrinol. 1981 Dec;45(4):446–452. doi: 10.1016/0016-6480(81)90047-2. [DOI] [PubMed] [Google Scholar]
  15. Pearson D., Shively J. E., Clark B. R., Geschwind I. I., Barkley M., Nishioka R. S., Bern H. A. Urotensin II: a somatostatin-like peptide in the caudal neurosecretory system of fishes. Proc Natl Acad Sci U S A. 1980 Aug;77(8):5021–5024. doi: 10.1073/pnas.77.8.5021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Vallee E., Gougat J., Navarro J., Delahayes J. F. Anti-inflammatory and platelet anti-aggregant activity of phospholipase-A2 inhibitors. J Pharm Pharmacol. 1979 Sep;31(9):588–592. doi: 10.1111/j.2042-7158.1979.tb13597.x. [DOI] [PubMed] [Google Scholar]
  17. Vargaftig B. B., Hai N. D. Selective inhibition by mepacrine of the release of "rabbit aorta contracting substance" evoked by the administration of bradykinin. J Pharm Pharmacol. 1972 Feb;24(2):159–161. doi: 10.1111/j.2042-7158.1972.tb08953.x. [DOI] [PubMed] [Google Scholar]
  18. Volwerk J. J., Pieterson W. A., de Haas G. H. Histidine at the active site of phospholipase A2. Biochemistry. 1974 Mar 26;13(7):1446–1454. doi: 10.1021/bi00704a020. [DOI] [PubMed] [Google Scholar]
  19. Yamamoto S., Nakadate T., Nakaki T., Ishii K., Kato R. Tumor promotor 12-O-tetradecanoylphorbol-13-acetate-induced insulin secretion: inhibition by phospholipase A2-and lipoxygenase-inhibitors. Biochem Biophys Res Commun. 1982 Mar 30;105(2):759–765. doi: 10.1016/0006-291x(82)91499-1. [DOI] [PubMed] [Google Scholar]
  20. van Breemen C., Aaronson P., Loutzenhiser R., Meisheri K. Calcium fluxes in isolated rabbit aorta and guinea pig tenia coli. Fed Proc. 1982 Oct;41(12):2891–2897. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES