Abstract
The effects of gamma-aminobutyric acid (GABA) and other drugs which interact with GABA receptors were studied on a reflex of slow time course in the spinal cord preparation isolated from the neonatal rat. A single shock to a dorsal root (L3-L5) elicited a stereotyped series of reflexes, consisting of fast and slow components, recorded from the contralateral ventral root of the corresponding segment. The slow component, i.e. the contralateral slow ventral root potential (v.r.p.) had a time-to-peak of 2-5 s and lasted 20-30 s. Bath-application of GABA (5-20 microM) or muscimol (0.05-0.5 microM) caused a decrease in the amplitude of the contralateral slow v.r.p. without producing any change in the d.c. potential recorded from the ventral root. The monosynaptic reflex recorded from the ipsilateral ventral root was not changed by the drugs at these concentrations. Diazepam (0.1-1 microM) potentiated the depolarizing response of the dorsal root to GABA and markedly depressed the contralateral slow v.r.p. Neither the d.c. potential of the ventral root nor the dorsal root was changed by diazepam. The monosynaptic reflex was also unaffected by the drug. Bicuculline (1 microM) suppressed the GABA-induced depolarization recorded from the dorsal root whilst it markedly potentiated the contralateral slow v.r.p. Baclofen at concentrations from 0.01 to 0.1 microM reduced the contralateral slow v.r.p. The inhibitory action of baclofen on the contralateral slow v.r.p. was more marked than on the monosynaptic reflex.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akagi H., Konishi S., Otsuka M., Yanagisawa M. The role of substance P as a neurotransmitter in the reflexes of slow time courses in the neonatal rat spinal cord. Br J Pharmacol. 1985 Mar;84(3):663–673. doi: 10.1111/j.1476-5381.1985.tb16148.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowery N. G., Doble A., Hill D. R., Hudson A. L., Shaw J. S., Turnbull M. J., Warrington R. Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur J Pharmacol. 1981 Apr 24;71(1):53–70. doi: 10.1016/0014-2999(81)90386-1. [DOI] [PubMed] [Google Scholar]
- Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., Turnbull M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature. 1980 Jan 3;283(5742):92–94. doi: 10.1038/283092a0. [DOI] [PubMed] [Google Scholar]
- ECCLES J. C., SCHMIDT R., WILLIS W. D. PHARMACOLOGICAL STUDIES ON PRESYNAPTIC INHIBITION. J Physiol. 1963 Oct;168:500–530. doi: 10.1113/jphysiol.1963.sp007205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eccles R. M., Willis W. D. Presynaptic inhibition of the monosynaptic reflex pathway in kittens. J Physiol. 1963 Mar;165(3):403–420. doi: 10.1113/jphysiol.1963.sp007066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fagg G. E., Foster A. C. Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience. 1983 Aug;9(4):701–719. doi: 10.1016/0306-4522(83)90263-4. [DOI] [PubMed] [Google Scholar]
- Hill D. R., Bowery N. G. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature. 1981 Mar 12;290(5802):149–152. doi: 10.1038/290149a0. [DOI] [PubMed] [Google Scholar]
- Hullihan J. P., Spector S., Taniguchi T., Wang J. K. The binding of [3H]-diazepam to guinea-pig ileal longitudinal muscle and the in vitro inhibition of contraction by benzodiazepines. Br J Pharmacol. 1983 Feb;78(2):321–327. doi: 10.1111/j.1476-5381.1983.tb09397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hunt S. P., Kelly J. S., Emson P. C., Kimmel J. R., Miller R. J., Wu J. Y. An immunohistochemical study of neuronal populations containing neuropeptides or gamma-aminobutyrate within the superficial layers of the rat dorsal horn. Neuroscience. 1981;6(10):1883–1898. doi: 10.1016/0306-4522(81)90029-4. [DOI] [PubMed] [Google Scholar]
- Kawasaki K., Matsushita A. GABA-ergic influence on the crossed extensor reflex. Life Sci. 1982 May 10;30(19):1625–1629. doi: 10.1016/0024-3205(82)90494-5. [DOI] [PubMed] [Google Scholar]
- Kawasaki K., Matsushita A. Sensitive depressant effect of benzodiazepines on the crossed extensor reflex in chloralose-anesthetized rats. Life Sci. 1981 Mar 23;28(12):1391–1398. doi: 10.1016/0024-3205(81)90414-8. [DOI] [PubMed] [Google Scholar]
- Levy R. A. The role of GABA in primary afferent depolarization. Prog Neurobiol. 1977;9(4):211–267. doi: 10.1016/0301-0082(77)90002-8. [DOI] [PubMed] [Google Scholar]
- McLaughlin B. J., Barber R., Saito K., Roberts E., Wu J. Y. Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J Comp Neurol. 1975 Dec 1;164(3):305–321. doi: 10.1002/cne.901640304. [DOI] [PubMed] [Google Scholar]
- Miyata Y., Otsuka M. Quantitative histochemistry of gamma-aminobutyric acid in cat spinal cord with special reference to presynaptic inhibition. J Neurochem. 1975 Sep;25(3):239–244. doi: 10.1111/j.1471-4159.1975.tb06959.x. [DOI] [PubMed] [Google Scholar]
- Otsuka M., Yanagisawa M. The effects of substance P and baclofen on motoneurones of isolated spinal cord of the newborn rat. J Exp Biol. 1980 Dec;89:201–214. doi: 10.1242/jeb.89.1.201. [DOI] [PubMed] [Google Scholar]
- Price G. W., Wilkin G. P., Turnbull M. J., Bowery N. G. Are baclofen-sensitive GABAB receptors present on primary afferent terminals of the spinal cord? Nature. 1984 Jan 5;307(5946):71–74. doi: 10.1038/307071a0. [DOI] [PubMed] [Google Scholar]
- Saito K., Konishi S., Otsuka M. Antagonism between Lioresal and substance P in rat spinal cord. Brain Res. 1975 Oct 24;97(1):177–180. doi: 10.1016/0006-8993(75)90928-2. [DOI] [PubMed] [Google Scholar]
- Seno N., Saito K. The development of the dorsal root potential and the responsiveness of primary afferent fibers to gamma-aminobutyric acid in the spinal cord of rat fetuses. Brain Res. 1985 Jan;349(1-2):11–16. doi: 10.1016/0165-3806(85)90127-0. [DOI] [PubMed] [Google Scholar]
- Squires R. F., Brastrup C. Benzodiazepine receptors in rat brain. Nature. 1977 Apr 21;266(5604):732–734. doi: 10.1038/266732a0. [DOI] [PubMed] [Google Scholar]
- Suzue T., Jessell T. Opiate analgesics and endorphins inhibit rat dorsal root potential in vitro. Neurosci Lett. 1980 Feb;16(2):161–166. doi: 10.1016/0304-3940(80)90337-7. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Otsuka M., Konishi S., Akagi H., Folkers K., Rosell S. A substance P antagonist inhibits a slow reflex response in the spinal cord of the newborn rat. Acta Physiol Scand. 1982 Sep;116(1):109–112. doi: 10.1111/j.1748-1716.1982.tb10608.x. [DOI] [PubMed] [Google Scholar]