Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1987 Jun;91(2):287–297. doi: 10.1111/j.1476-5381.1987.tb10283.x

D2-dopamine receptor-mediated inhibition of intracellular Ca2+ mobilization and release of acetylcholine from guinea-pig neostriatal slices.

H Fujiwara, N Kato, H Shuntoh, C Tanaka
PMCID: PMC1853530  PMID: 2886167

Abstract

The effect of dopamine receptor activation on electrically- or high K+ (30 mM)-evoked neurotransmitter release and rise in intracellular Ca2+ concentration was investigated using slices of guinea-pig neostriatum. A specific D2-dopamine receptor agonist, LY-171555 (a laevorotatory enantiomer of LY-141865: N-propyl tricyclic pyrazole) at 10(-6) M inhibited electrical stimulation- and high K+-evoked release of [3H]-acetylcholine ([3H]-ACh) to 47.7 +/- 6.0% and 54.1 +/- 5.0% of control, respectively. The maximal inhibition by LY-171555 at 10(-5) M was 54.8 +/- 5.1% reduction of the control. The half-maximal effective concentration (EC50) of LY-171555 for the inhibition of [3H]-ACh release was 2.3 X 10(-7) M. A specific D2-dopamine receptor antagonist, (-)-sulpiride (10(-7) M) reversed the inhibition of [3H]-ACh release induced by LY-171555. A specific D1-dopamine receptor agonist, SK&F 38393 (2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-benzazepine) (10(-5) M) had no effect on the release of [3H]-ACh. LY-171555 (10(-6) M) also inhibited the high K+-evoked endogenous glutamate release, by 47% of control. This inhibitory effect was reversed by (-)-sulpiride (10(-7) M). We used a fluorescent, highly selective Ca2+ indicator, 'quin 2' to measure intracellular free Ca2+ concentrations ([Ca2+]i). Electrical stimulation of slices preloaded with quin 2 led to an elevation of relative fluorescence intensity and this response was reduced by the removal of Ca2+ from the bathing medium. These results indicate that the enhanced elevation in fluorescence intensity in the quin 2-loaded slices reflects the increase of intracellular free Ca2+ concentration, [Ca2+]i. The mixed D1- and D2-receptor agonist, apomorphine and LY-171555 inhibited the increase of [Ca2+]i induced by electrical stimulation or high K+ medium, in a concentration-dependent manner, while SK&F 38393 did not affect the increase of [Ca2+]i. The maximal inhibitory effect of LY-171555 at 3 X 10(-5) M was 35 +/- 3% reduction in control values. The inhibitory effect of LY-171555 was antagonized by (-)-sulpiride (10(-7) M). There was a high correlation (r = 0.997, P less than 0.05) between the D 2-receptor-mediated inhibition of the stimulated rise of [Ca2+]i and [3H]-ACh release. When the slices were superfused with the Ca2+-free medium containing EGTA (10(-4) M) for 5 min, the rise in [Ca2+]i was markedly suppressed to 18.0% of control by LY-171555 (10(-6) M). These data indicate that activation of the D2-dopamine receptor suppresses the elevation of [Ca2+]i induced by depolarizing stimuli.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
287

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alberts P., Bartfai T., Stjärne L. Site(s) and ionic basis of alpha-autoinhibition and facilitation of "3H'noradrenaline secretion in guinea-pig vas deferens. J Physiol. 1981 Mar;312:297–334. doi: 10.1113/jphysiol.1981.sp013630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alberts P., Bartfai T., Stjärne L. The effects of atropine on [3H]acetylcholine secretion from guinea-pig myenteric plexus evoked electrically or by high potassium. J Physiol. 1982 Aug;329:93–112. doi: 10.1113/jphysiol.1982.sp014292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arbilla S., Langer S. Z. Stereoselectivity of presynaptic autoreceptors modulating dopamine release. Eur J Pharmacol. 1981 Dec 17;76(4):345–351. doi: 10.1016/0014-2999(81)90105-9. [DOI] [PubMed] [Google Scholar]
  4. Ashley R. H., Brammer M. J., Marchbanks R. Measurement of intrasynaptosomal free calcium by using the fluorescent indicator quin-2. Biochem J. 1984 Apr 1;219(1):149–158. doi: 10.1042/bj2190149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baud P., Arbilla S., Langer S. Z. Inhibition of the electrically evoked release of [3H]acetylcholine in rat striatal slices: an experimental model for drugs that enhance dopaminergic neurotransmission. J Neurochem. 1985 Feb;44(2):331–337. doi: 10.1111/j.1471-4159.1985.tb05421.x. [DOI] [PubMed] [Google Scholar]
  6. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  7. Blaustein M. P., Johnson E. M., Jr, Needleman P. Calcium-dependent norepinephrine release from presynaptic nerve endings in vitro. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2237–2240. doi: 10.1073/pnas.69.8.2237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Canonico P. L., Valdenegro C. A., Macleod R. M. Dopamine inhibits 32P incorporation into phosphatidylinositol in the anterior pituitary gland of the rat. Endocrinology. 1982 Jul;111(1):347–349. doi: 10.1210/endo-111-1-347. [DOI] [PubMed] [Google Scholar]
  9. Cubeddu L. X., Hoffmann I. S. Frequency-dependent release of acetylcholine and dopamine from rabbit striatum: its modulation by dopaminergic receptors. J Neurochem. 1983 Jul;41(1):94–101. doi: 10.1111/j.1471-4159.1983.tb11818.x. [DOI] [PubMed] [Google Scholar]
  10. Cubeddu L. X., Hoffmann I. S. Operational characteristics of the inhibitory feedback mechanism for regulation of dopamine release via presynaptic receptors. J Pharmacol Exp Ther. 1982 Nov;223(2):497–501. [PubMed] [Google Scholar]
  11. Di Virgilio F., Lew D. P., Pozzan T. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature. 1984 Aug 23;310(5979):691–693. doi: 10.1038/310691a0. [DOI] [PubMed] [Google Scholar]
  12. Dufy B., Vincent J. D., Fleury H., Du Pasquier P., Gourdji D., Tixier-Vidal A. Dopamine inhibition of action potentials in a prolactin secreting cell line is modulated by oestrogen. Nature. 1979 Dec 20;282(5741):855–857. doi: 10.1038/282855a0. [DOI] [PubMed] [Google Scholar]
  13. Hallam T. J., Thompson N. T., Scrutton M. C., Rink T. J. The role of cytoplasmic free calcium in the responses of quin2-loaded human platelets to vasopressin. Biochem J. 1984 Aug 1;221(3):897–901. doi: 10.1042/bj2210897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Iversen L. L., Mitchell J. F., Srinivasan V. The release of gamma-aminobutyric acid during inhibition in the cat visual cortex. J Physiol. 1971 Jan;212(2):519–534. doi: 10.1113/jphysiol.1971.sp009339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lehmann J., Briley M., Langer S. Z. Characterization of dopamine autoreceptor and [3H]spiperone binding sites in vitro with classical and novel dopamine receptor agonists. Eur J Pharmacol. 1983 Mar 18;88(1):11–26. doi: 10.1016/0014-2999(83)90387-4. [DOI] [PubMed] [Google Scholar]
  16. Meldolesi J., Huttner W. B., Tsien R. Y., Pozzan T. Free cytoplasmic Ca2+ and neurotransmitter release: studies on PC12 cells and synaptosomes exposed to alpha-latrotoxin. Proc Natl Acad Sci U S A. 1984 Jan;81(2):620–624. doi: 10.1073/pnas.81.2.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miledi R., Parker I. Calcium transients recorded with arsenazo III in the presynaptic terminal of the squid giant synapse. Proc R Soc Lond B Biol Sci. 1981 May 22;212(1187):197–211. doi: 10.1098/rspb.1981.0034. [DOI] [PubMed] [Google Scholar]
  18. Mitchell P. R., Doggett N. S. Modulation of striatal [3H]-glutamic acid release by dopaminergic drugs. Life Sci. 1980 Jun 16;26(24):2073–2081. doi: 10.1016/0024-3205(80)90592-5. [DOI] [PubMed] [Google Scholar]
  19. Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
  20. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  21. Nitsch C., Kim J. K., Shimada C., Okada Y. Effect of hippocampus extirpation in the rat on glutamate levels in target structures of hippocampal efferents. Neurosci Lett. 1979 Mar;11(3):295–299. doi: 10.1016/0304-3940(79)90011-9. [DOI] [PubMed] [Google Scholar]
  22. Rorsman P., Abrahamsson H., Gylfe E., Hellman B. Dual effects of glucose on the cytosolic Ca2+ activity of mouse pancreatic beta-cells. FEBS Lett. 1984 May 7;170(1):196–200. doi: 10.1016/0014-5793(84)81398-8. [DOI] [PubMed] [Google Scholar]
  23. Rowlands G. J., Roberts P. J. Specific calcium-dependent release of endogenous glutamate from rat striatum is reduced by destruction of the cortico-striatal tract. Exp Brain Res. 1980;39(2):239–240. doi: 10.1007/BF00237555. [DOI] [PubMed] [Google Scholar]
  24. Saijoh K., Fujiwara H., Tanaka C. Influence of hypoxia on release and uptake of neurotransmitters in guinea pig striatal slices: dopamine and acetylcholine. Jpn J Pharmacol. 1985 Dec;39(4):529–539. doi: 10.1254/jjp.39.529. [DOI] [PubMed] [Google Scholar]
  25. Scatton B. Effect of dopamine agonists and neuroleptic agents on striatal acetylcholine transmission in the rat: evidence against dopamine receptor multiplicity. J Pharmacol Exp Ther. 1982 Jan;220(1):197–202. [PubMed] [Google Scholar]
  26. Schofield J. G. Use of a trapped fluorescent indicator to demonstrate effects of thyroliberin and dopamine on cytoplasmic calcium concentrations in bovine anterior pituitary cells. FEBS Lett. 1983 Aug 8;159(1-2):79–82. doi: 10.1016/0014-5793(83)80420-7. [DOI] [PubMed] [Google Scholar]
  27. Stoof J. C., Kebabian J. W. Independent in vitro regulation by the D-2 dopamine receptor of dopamine-stimulated efflux of cyclic AMP and K+-stimulated release of acetylcholine from rat neostriatum. Brain Res. 1982 Nov 4;250(2):263–270. doi: 10.1016/0006-8993(82)90420-6. [DOI] [PubMed] [Google Scholar]
  28. Tanaka C., Fujiwara H., Fujii Y. Acetylcholine release from guinea pig caudate slices evoked by phorbol ester and calcium. FEBS Lett. 1986 Jan 20;195(1-2):129–134. doi: 10.1016/0014-5793(86)80146-6. [DOI] [PubMed] [Google Scholar]
  29. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tsien R. Y., Pozzan T., Rink T. J. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature. 1982 Jan 7;295(5844):68–71. doi: 10.1038/295068a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES