Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1987 Jul;91(3):539–546. doi: 10.1111/j.1476-5381.1987.tb11247.x

Catecholamine release evoked by lithium from the perfused adrenal gland of the cat.

F J Abajo, M A Castro, B Garijo, P Sánchez-García
PMCID: PMC1853568  PMID: 3607367

Abstract

The effect of Li on catecholamine release by cat isolated retrogradely perfused adrenal gland was investigated. Replacement of Na (119 mM) by Li in the Krebs solution evoked a progressive increase in the spontaneous release of catecholamines that reached a maximum within 45 min and was Ca-dependent. This response was specific for Li, since sucrose or choline used as osmotic substitutes for Na, failed to increase the spontaneous release of catecholamines by the adrenal gland. In glands perfused with Li-Krebs for 30 min a sharp secretory response was observed when Li was replaced by sucrose or choline; no such an effect was seen when Li was replaced by Na. Partial replacement of Na by sucrose, in ouabain (10(-4) M, 10 min) pretreated glands perfused with normal Krebs induced a sharp increase in the catecholamine output whilst replacement by Li produced a significantly lower response. Reintroduction of Ca (2.5 mM, 2 min) in glands previously perfused with Ca-free, Mg-containing Li-Krebs, evoked a sharp increase in catecholamine release. No such an effect was seen when the glands were perfused with Ca-free normal, choline- or sucrose-Krebs. The release of catecholamines evoked by Ca reintroduction in glands previously perfused with Ca-free Li-Krebs was directly dependent on the Li concentration and the length of time of the Li loading period. In summary, our results indicate that Li accumulates in the cells and can partially substitute Na in the Na-Ca counter-transport system at the plasma membrane of the chromaffin cell.

Full text

PDF
539

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTON A. H., SAYRE D. F. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther. 1962 Dec;138:360–375. [PubMed] [Google Scholar]
  2. Aunis D., García A. G. Correlation between catecholamine secretion from bovine isolated chromaffin cells and [3H]-ouabain binding to plasma membranes. Br J Pharmacol. 1981 Jan;72(1):31–40. doi: 10.1111/j.1476-5381.1981.tb09101.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker P. F., Blaustein M. P., Hodgkin A. L., Steinhardt R. A. The influence of calcium on sodium efflux in squid axons. J Physiol. 1969 Feb;200(2):431–458. doi: 10.1113/jphysiol.1969.sp008702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baker P. F., Rink T. J. Catecholamine release from bovine adrenal medulla in response to maintained depolarization. J Physiol. 1975 Dec;253(2):593–620. doi: 10.1113/jphysiol.1975.sp011209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
  6. DOUGLAS W. W., RUBIN R. P. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol. 1961 Nov;159:40–57. doi: 10.1113/jphysiol.1961.sp006791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Douglas W. W., Rubin R. P. The mechanism of catecholamine release from the adrenal medulla and the role of calcium in stimulus-secretion coupling. J Physiol. 1963 Jul;167(2):288–310. doi: 10.1113/jphysiol.1963.sp007150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehrlich B. E., Diamond J. M. Lithium, membranes, and manic-depressive illness. J Membr Biol. 1980;52(3):187–200. doi: 10.1007/BF01869189. [DOI] [PubMed] [Google Scholar]
  9. Esquerro E., Garcia A. G., Herandez M., Kirpekar S. M., Prat J. C. Catecholamine secretory response to calcium reintroduction in the perfused cat adrenal gland treated with ouabain. Biochem Pharmacol. 1980 Oct 1;29(19):2669–2673. doi: 10.1016/0006-2952(80)90084-2. [DOI] [PubMed] [Google Scholar]
  10. Garcia A. G., Garcia-Lopez E., Montiel C., Nicolas G. P., Sanchez-Garcia P. Correlation between catecholamine release and sodium pump inhibition in the perfused adrenal gland of the cat. Br J Pharmacol. 1981 Nov;74(3):665–672. doi: 10.1111/j.1476-5381.1981.tb10477.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garcia A. G., Hernandez M., Horga J. F., Sanchez-Garcia P. On the release of catecholamines and dopamine-beta-hydroxylase evoked by ouabain in the perfused cat adrenal gland. Br J Pharmacol. 1980 Mar;68(3):571–583. doi: 10.1111/j.1476-5381.1980.tb14573.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hille B. Ionic channels in nerve membranes. Prog Biophys Mol Biol. 1970;21:1–32. doi: 10.1016/0079-6107(70)90022-2. [DOI] [PubMed] [Google Scholar]
  13. KEYNES R. D., SWAN R. C. The permeability of frog muscle fibres to lithium ions. J Physiol. 1959 Oct;147:626–638. doi: 10.1113/jphysiol.1959.sp006265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lastowecka A., Trifaró J. M. The effect of sodium and calcium ions on the release of catecholamines from the adrenal medulla: sodium deprivation induces release by exocytosis in the absence of extracellular calcium. J Physiol. 1974 Feb;236(3):681–705. doi: 10.1113/jphysiol.1974.sp010460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mullins L. J. Steady-state calcium fluxes: membrane versus mitochondrial control of ionized calcium in axoplasm. Fed Proc. 1976 Dec;35(14):2583–2588. [PubMed] [Google Scholar]
  16. Nishimura S., Sorimachi M. Mechanism of calcium efflux from isolated bovine adrenal chromaffin cells. Jpn J Physiol. 1984;34(4):731–745. doi: 10.2170/jjphysiol.34.731. [DOI] [PubMed] [Google Scholar]
  17. Nishimura S., Sorimachi M., Yamagami K. Exocytotic secretion of catecholamines from the cat adrenal medulla by sodium deprivation: involvement of calcium influx mechanism. Br J Pharmacol. 1981 Feb;72(2):305–317. doi: 10.1111/j.1476-5381.1981.tb09130.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reeves J. P., Sutko J. L. Competitive interactions of sodium and calcium with the sodium-calcium exchange system of cardiac sarcolemmal vesicles. J Biol Chem. 1983 Mar 10;258(5):3178–3182. [PubMed] [Google Scholar]
  19. Rink T. J. The influence of sodium on calcium movements and catecholamine release in thin slices of bovine adrenal medulla. J Physiol. 1977 Apr;266(2):297–325. doi: 10.1113/jphysiol.1977.sp011769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schou M. Pharmacology and toxicology of lithium. Annu Rev Pharmacol Toxicol. 1976;16:231–243. doi: 10.1146/annurev.pa.16.040176.001311. [DOI] [PubMed] [Google Scholar]
  21. Sorimachi M., Nishimura S. Operation of internal Na-dependent Ca influx mechanism associated with catecholamine secretion in the adrenal chromaffin cells. Jpn J Physiol. 1984;34(1):19–39. doi: 10.2170/jjphysiol.34.19. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES