Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1987 Sep;92(1):77–86. doi: 10.1111/j.1476-5381.1987.tb11298.x

The effects of external and internal application of disopyramide on the ionic currents of the squid giant axon.

J R Elliott 1, B M Hendry 1
PMCID: PMC1853630  PMID: 2444301

Abstract

1 The actions of the class I anti-arrythmic agent, disopyramide, on the ionic currents of the voltage-clamped squid axon have been investigated, by use of both extra-axonal and intra-axonal routes of application. 2 Extra-axonal application of 0.1 mM disopyramide produced no significant effects on the membrane currents. External disopyramide at 1.0 mM caused small, poorly reversible inhibition of both sodium and potassium currents. This block was use-dependent and was enhanced by use of test stimuli to more positive membrane potentials. 3 Intra-axonal application of 0.1 mM disopyramide caused a 40% reduction in the first-pulse sodium current (tonic block) and an additional use-dependent block. Analysis of first-pulse currents in terms of the Hodgkin-Huxley formalism indicated that the block resulted mainly from a reduction in the maximum available sodium conductance (gNa); there were no effects on the voltage dependence of the steady-state activation and inactivation parameters, m infinity and h infinity. 4 The use-dependent actions of disopyramide were investigated with a double voltage-clamp pulse protocol. The significant use-dependent effects of the drug were a further reduction in gNa and an increase in the time constant of inactivation (tau h). 5 Disopyramide appears to enter a blocking site in the sodium channel which is only readily accessible from the axoplasmic phase. Partition to the site depends on membrane voltage and on the state of the channel gates. Disopyramide binds at a significant rate to both open and inactivated forms of the sodium channel.

Full text

PDF
77

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cahalan M. D. Local anesthetic block of sodium channels in normal and pronase-treated squid giant axons. Biophys J. 1978 Aug;23(2):285–311. doi: 10.1016/S0006-3495(78)85449-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Danilo P., Jr, Hordof A. J., Rosen M. R. Effects of disopyramide on electrophysiologic properties of canine cardiac purkinje fibers. J Pharmacol Exp Ther. 1977 Jun;201(3):701–710. [PubMed] [Google Scholar]
  3. Edwards I. R., Martin J. F., Ward J. W. The effect of disopyramide on in vivo measurement of monophasic action potential in canine heart muscle. J Int Med Res. 1976;4(1 Suppl):26–30. [PubMed] [Google Scholar]
  4. Elliott J. R., Haydon D. A., Hendry B. M. Dual effects of internal n-alkyltrimethylammonium ions on the sodium current of the squid giant axon. J Physiol. 1985 Apr;361:47–64. doi: 10.1113/jphysiol.1985.sp015632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gintant G. A., Hoffman B. F. Use-dependent block of cardiac sodium channels by quaternary derivatives of lidocaine. Pflugers Arch. 1984 Feb;400(2):121–129. doi: 10.1007/BF00585029. [DOI] [PubMed] [Google Scholar]
  6. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haydon D. A., Requena J., Urban B. W. Some effects of aliphatic hydrocarbons on the electrical capacity and ionic currents of the squid giant axon membrane. J Physiol. 1980 Dec;309:229–245. doi: 10.1113/jphysiol.1980.sp013506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haydon D. A., Urban B. W. The action of hydrocarbons and carbon tetrachloride on the sodium current of the squid giant axon. J Physiol. 1983 May;338:435–450. doi: 10.1113/jphysiol.1983.sp014682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heel R. C., Brogden R. N., Speight T. M., Avery G. S. Disopyramide: a review of its pharmacological properties and therapeutic use in treating cardiac arrhythmias. Drugs. 1978 May;15(5):331–368. [PubMed] [Google Scholar]
  10. Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hondeghem L. M., Katzung B. G. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol. 1984;24:387–423. doi: 10.1146/annurev.pa.24.040184.002131. [DOI] [PubMed] [Google Scholar]
  12. Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
  13. Isenberg G., Ravens U. The effects of the Anemonia sulcata toxin (ATX II) on membrane currents of isolated mammalian myocytes. J Physiol. 1984 Dec;357:127–149. doi: 10.1113/jphysiol.1984.sp015493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kendig J. J., Courtney K. R., Cohen E. N. Anesthetics: molecular correlates of voltage- and frequency-dependent sodium channel block in nerve. J Pharmacol Exp Ther. 1979 Sep;210(3):446–452. [PubMed] [Google Scholar]
  15. Kimura J. E., Meves H. The effect of temperature on the asymmetrical charge movement in squid giant axons. J Physiol. 1979 Apr;289:479–500. doi: 10.1113/jphysiol.1979.sp012748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kojima M., Ban T., Sada H. Effects of disopyramide on the maximum rate of rise of action potential (Vmax) in guinea-pig papillary muscles. Jpn J Pharmacol. 1982 Feb;32(1):91–102. doi: 10.1254/jjp.32.91. [DOI] [PubMed] [Google Scholar]
  17. Kus T., Sasyniuk B. I. Disopyramide phosphate: is it just another quinidine. Can J Physiol Pharmacol. 1978 Apr;56(2):326–331. doi: 10.1139/y78-049. [DOI] [PubMed] [Google Scholar]
  18. Sanchez-Chapula J., Tsuda Y., Josephson I. R. Voltage- and use-dependent effects of lidocaine on sodium current in rat single ventricular cells. Circ Res. 1983 May;52(5):557–565. doi: 10.1161/01.res.52.5.557. [DOI] [PubMed] [Google Scholar]
  19. Singh B. N., Williams E. M. Effects on cardiac muscle of the -adrenoceptor blocking drugs INPEA and LB46 in relation to their local anaesthetic action on nerve. Br J Pharmacol. 1971 Sep;43(1):10–22. doi: 10.1111/j.1476-5381.1971.tb07152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Strichartz G. R. The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine. J Gen Physiol. 1973 Jul;62(1):37–57. doi: 10.1085/jgp.62.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yamada S., Nishimura M., Watanabe Y. Electrophysiologic effects of disopyramide studied in a hypoxic canine Purkinje fiber model. J Electrocardiol. 1982 Jan;15(1):31–39. doi: 10.1016/s0022-0736(82)80042-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES