Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1983 Oct;24(4):522–528. doi: 10.1128/aac.24.4.522

Phosphonopeptides as substrates for peptide transport systems and peptidases of Escherichia coli.

F R Atherton, M J Hall, C H Hassall, R W Lambert, W J Lloyd, A V Lord, P S Ringrose, D Westmacott
PMCID: PMC185367  PMID: 6360039

Abstract

Peptide transport and peptidase susceptibility of the antibacterial agent alafosfalin and other phosphonopeptides have been characterized in Escherichia coli. Phosphonodipeptides were accumulated by a process which appeared to involve multiple permeases; saturation was not achieved even at concentrations of 128 microM. Competition studies showed that these compounds had only a low affinity for the system transporting phosphonooligopeptides and were rapidly taken up by and were inhibitory to E. coli mutants unable to transport the toxic peptide triornithine. Phosphonodipeptides containing D-residues were not appreciably transported. By contrast, phosphonooligopeptides were generally transported by a distinct saturable permease system for which they had a high affinity. This system was identical to that utilized by triornithine. Phosphonooligopeptides with simple monoalkyl substituents at the amino terminus were also transported except in the case of a t-butyl substituent. The oligopeptide permease was also able to transport certain derivatives which contained some residues having D rather than L stereochemistry. Intracellular metabolism of phosphonooligopeptides was initiated almost exclusively by hydrolysis from the N terminus by an L-specific peptidase. This initial hydrolytic activity was unaffected by the aminopeptidase inhibitor bestatin, unlike the final hydrolysis step which yields L-1-aminoethylphosphonic acid from the phosphonodipeptide intermediate.

Full text

PDF
522

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. G., Atherton F. R., Hall M. J., Hassall C. H., Holmes S. W., Lambert R. W., Nisbet L. J., Ringrose P. S. Phosphonopeptides, a new class of synthetic antibacterial agents. Nature. 1978 Mar 2;272(5648):56–58. doi: 10.1038/272056a0. [DOI] [PubMed] [Google Scholar]
  2. Atherton F. R., Hall M. J., Hassall C. H., Holmes S. W., Lambert R. W., Lloyd W. J., Nisbet L. J., Ringrose P. S., Westmacott D. Antibacterial properties of alafosfalin combined with cephalexin. Antimicrob Agents Chemother. 1981 Oct;20(4):470–476. doi: 10.1128/aac.20.4.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Atherton F. R., Hall M. J., Hassall C. H., Lambert R. W., Lloyd W. J., Ringrose P. S. Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Antimicrob Agents Chemother. 1979 May;15(5):696–705. doi: 10.1128/aac.15.5.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barak Z., Gilbarg C. Specialized peptide transport system in Escherichia coli. J Bacteriol. 1975 Jun;122(3):1200–1207. doi: 10.1128/jb.122.3.1200-1207.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barak Z., Gilvarg C. Triornithine-resistant strains of Escherichia coli. Isolation, definition, and genetic studies. J Biol Chem. 1974 Jan 10;249(1):143–148. [PubMed] [Google Scholar]
  6. Kenig M., Abraham E. P. Antimicrobial activities and antagonists of bacilysin and anticapsin. J Gen Microbiol. 1976 May;94(1):37–45. doi: 10.1099/00221287-94-1-37. [DOI] [PubMed] [Google Scholar]
  7. Payne J. W. Peptide transport in Escherichia coli: permease specificity towards terminal amino group substituents. J Gen Microbiol. 1974 Jan;80(1):269–276. doi: 10.1099/00221287-80-1-269. [DOI] [PubMed] [Google Scholar]
  8. Payne J. W. The requirement for the protonated -amino group for the transport of peptides in Escherichia coli. Biochem J. 1971 Jun;123(2):245–253. doi: 10.1042/bj1230245. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES