Abstract
1. Using conventional microelectrode techniques for the intracellular recordings of the membrane potential, the effects of labetalol were studied on cardiac Purkinje, atrial and ventricular muscle fibres of the dog. 2. Labetalol (1-10 microM) reduced, in a concentration-dependent manner, the action potential amplitude (APA) and the maximum rate of rise of the action potential (Vmax) in Purkinje fibres. 3. The action potential duration (APD) was decreased in Purkinje fibres but significantly increased in ventricular fibres after small concentrations of labetalol (1-3 microM). The atrial fibres were not very sensitive to labetalol. 4. Depolarization of the cardiac Purkinje fibres by increasing the external potassium concentration (8-12 mM), potentiated the labetalol effects on APA and Vmax but blocked its effects on the APD. 5. The effects of labetalol on Vmax of Purkinje fibres were dependent on the frequency of stimulation. 6. The ratio of the effective refractory period to the APD was increased both in normally polarized and depolarized Purkinje fibres after treatment with labetalol (10 microM). 7. Labetalol (10 microM) shifted the membrane responsiveness curve of Purkinje fibres by about 10 mV in the hyperpolarizing direction. 8. The slow response obtained in K-depolarized, Ba-treated Purkinje fibres was not significantly affected by labetalol (10-100 microM). 9. It is suggested that labetalol can exert Class I and Class III antiarrhythmic actions in cardiac muscle of the dog in vitro.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attwell D., Cohen I., Eisner D., Ohba M., Ojeda C. The steady state TTX-sensitive ("window") sodium current in cardiac Purkinje fibres. Pflugers Arch. 1979 Mar 16;379(2):137–142. doi: 10.1007/BF00586939. [DOI] [PubMed] [Google Scholar]
- Brittain R. T., Levy G. P. A review of the animal pharmacology of labetalol, a combined alpha- and beta-adrenoceptor-blocking drug. Br J Clin Pharmacol. 1976 Aug;3(4 Suppl 3):681–684. [PubMed] [Google Scholar]
- Carmeliet E. Electrophysiologic and voltage clamp analysis of the effects of sotalol on isolated cardiac muscle and Purkinje fibers. J Pharmacol Exp Ther. 1985 Mar;232(3):817–825. [PubMed] [Google Scholar]
- Carmeliet E., Saikawa T. Shortening of the action potential and reduction of pacemaker activity by lidocaine, quinidine, and procainamide in sheep cardiac purkinje fibers. An effect on Na or K currents? Circ Res. 1982 Feb;50(2):257–272. doi: 10.1161/01.res.50.2.257. [DOI] [PubMed] [Google Scholar]
- Chen C., Gettes L. S. Combined effects of rate membrane potential, and drugs on maximum rate of rise (Vmax) of action potential upstroke of guinea pig papillary muscle. Circ Res. 1976 Jun;38(6):464–469. doi: 10.1161/01.res.38.6.464. [DOI] [PubMed] [Google Scholar]
- Colatsky T. J. Mechanisms of action of lidocaine and quinidine on action potential duration in rabbit cardiac Purkinje fibers. An effect on steady state sodium currents? Circ Res. 1982 Jan;50(1):17–27. doi: 10.1161/01.res.50.1.17. [DOI] [PubMed] [Google Scholar]
- Coraboeuf E., Deroubaix E., Coulombe A. Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am J Physiol. 1979 Apr;236(4):H561–H567. doi: 10.1152/ajpheart.1979.236.4.H561. [DOI] [PubMed] [Google Scholar]
- Daugherty A., Frayn K. N., Redfern W. S., Woodward B. The role of catecholamines in the production of ischaemia-induced ventricular arrhythmias in the rat in vivo and in vitro. Br J Pharmacol. 1986 Jan;87(1):265–277. doi: 10.1111/j.1476-5381.1986.tb10180.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dukes I. D., Vaughan Williams E. M. Electrophysiological effects of alpha-adrenoceptor antagonists in rabbit sino-atrial node, cardiac Purkinje cells and papillary muscles. Br J Pharmacol. 1984 Oct;83(2):419–426. doi: 10.1111/j.1476-5381.1984.tb16502.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grant A. O., Starmer C. F., Strauss H. C. Antiarrhythmic drug action. Blockade of the inward sodium current. Circ Res. 1984 Oct;55(4):427–439. doi: 10.1161/01.res.55.4.427. [DOI] [PubMed] [Google Scholar]
- HOFFMAN B. F., KAO C. Y., SUCKLING E. E. Refractoriness in cardiac muscle. Am J Physiol. 1957 Sep;190(3):473–482. doi: 10.1152/ajplegacy.1957.190.3.473. [DOI] [PubMed] [Google Scholar]
- Hille B. Local anesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J Gen Physiol. 1977 Apr;69(4):497–515. doi: 10.1085/jgp.69.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hondeghem L. M., Katzung B. G. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol. 1984;24:387–423. doi: 10.1146/annurev.pa.24.040184.002131. [DOI] [PubMed] [Google Scholar]
- Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
- JOHNSON E. A., McKINNON M. G. The differential effect of quinidine and pyrilamine on the myocardial action potential at various rates of stimulation. J Pharmacol Exp Ther. 1957 Aug;120(4):460–468. [PubMed] [Google Scholar]
- Kanto J. H. Current status of labetalol, the first alpha- and beta-blocking agent. Int J Clin Pharmacol Ther Toxicol. 1985 Nov;23(11):617–628. [PubMed] [Google Scholar]
- Penkoske P. A., Sobel B. E., Corr P. B. Disparate electrophysiological alterations accompanying dysrhythmia due to coronary occlusion and reperfusion in the cat. Circulation. 1978 Dec;58(6):1023–1035. doi: 10.1161/01.cir.58.6.1023. [DOI] [PubMed] [Google Scholar]
- Pogwizd S. M., Sharma A. D., Corr P. B. Influences of labetalol a combined alpha- and beta-adrenergic blocking agent on the dysrhythmias induced by coronary occlusion and reperfusion. Cardiovasc Res. 1982 Jul;16(7):398–407. doi: 10.1093/cvr/16.7.398. [DOI] [PubMed] [Google Scholar]
- Pratt C., Lichstein E. Ventricular antiarrhythmic effects of beta-adrenergic blocking drugs: a review of mechanism and clinical studies. J Clin Pharmacol. 1982 Aug-Sep;22(8-9):335–347. doi: 10.1002/j.1552-4604.1982.tb02684.x. [DOI] [PubMed] [Google Scholar]
- Riccioppo Neto F. Effects of cyproheptadine on electrophysiological properties of isolated cardiac muscle of dogs and rabbits. Br J Pharmacol. 1983 Oct;80(2):335–341. doi: 10.1111/j.1476-5381.1983.tb10038.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seth S. D. Antiarrhythmic action of adrenergic beta-receptor blocking agents. Pharmacol Ther. 1980;11(1):159–179. doi: 10.1016/0163-7258(80)90071-6. [DOI] [PubMed] [Google Scholar]
- Sleight P. Use of beta adrenoceptor blockade during and after acute myocardial infarction. Annu Rev Med. 1986;37:415–425. doi: 10.1146/annurev.me.37.020186.002215. [DOI] [PubMed] [Google Scholar]
- Tohse N., Nakaya H., Kanno M. Electrophysiological effects of amosulalol, a new alpha- and beta-adrenoceptor blocker, in isolated rabbit papillary muscles. Eur J Pharmacol. 1986 Jun 24;125(3):411–419. doi: 10.1016/0014-2999(86)90797-1. [DOI] [PubMed] [Google Scholar]
- Vaughn Williams E. M., Millar J. S., Campbell T. J. Electrophysiological effects of labetolol on rabbit atrial, ventricular and Purkinje cells, in normoxia and hypoxia. Cardiovasc Res. 1982 May;16(5):233–239. doi: 10.1093/cvr/16.5.233. [DOI] [PubMed] [Google Scholar]
- WEIDMANN S. The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J Physiol. 1955 Jan 28;127(1):213–224. doi: 10.1113/jphysiol.1955.sp005250. [DOI] [PMC free article] [PubMed] [Google Scholar]
