Abstract
1. The mechanisms involved in the responses induced by sodium vanadate (Va3 VO4) on cat cerebral and femoral arteries were studied. The possibility that these responses were due to Na+, K+-ATPase inhibition was investigated by measuring the effect of vanadate on [3H]-ouabain binding to arterial membrane fractions, K+-induced vasodilatation and ouabain-sensitive 86Rb+ uptake. 2. The vanadium compounds (Na3VO4, VOSO4, VCl3 and O5V3) induced similar, concentration-dependent contractions in each kind of artery, the cerebral vessels being the most sensitive to these compounds. 3. Exposure of the arteries to a low-Na+ (25 mM) solution suppressed the contraction caused by vanadate in femoral but not in cerebral arteries. 4. Vanadate-induced contractions were reduced in Ca2+-free medium but remained unaffected by 3 x 10(-6) M phentolamine, reserpine pretreatment or 3 x 10(-6) M verapamil in both kinds of artery. 5. The addition of 7.5 mM K+ to the arteries immersed in a K+-free solution induced vasodilatation, which was not modified by 10(-3) M vanadate. 6. The consecutive administration of ouabain (10(-4) M) and vanadate (10(-3) M) (or vice versa), or the simultaneous administration of both agents (10(-8) to 10(-3) M) appeared to produce an additive contraction in both types of artery. 7. Vanadate (10(-7) to 10(-3) M) did not displace the [3H]-ouabain binding to arterial membrane fractions of these arteries, whereas 10(-4) M ouabain did. 8. In both kinds of artery, total 86Rb+ uptake was reduced by ouabain (10(-8) to 10(-3) M), in a concentration-dependent manner, whereas it was not modified by vanadate (10(-8)-10(-3) M).(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beaugé L. A., Glynn I. M. Commercial ATP containing traces of vanadate alters the response of (Na+ + K+) ATPase to external potassium. Nature. 1978 Apr 6;272(5653):551–552. doi: 10.1038/272551a0. [DOI] [PubMed] [Google Scholar]
- Bond G. H., Hudgins P. M. Kinetics of inhibition of NaK-ATPase by Mg(2+), K+, and vanadate. Biochemistry. 1979 Jan 23;18(2):325–331. doi: 10.1021/bi00569a015. [DOI] [PubMed] [Google Scholar]
- Bukoski R. D., Seidel C. L., Allen J. C. Ouabain binding, Na+-K+-ATPase activity, and 86Rb uptake of canine arteries. Am J Physiol. 1983 Oct;245(4):H604–H609. doi: 10.1152/ajpheart.1983.245.4.H604. [DOI] [PubMed] [Google Scholar]
- Cantley L. C., Jr, Josephson L., Warner R., Yanagisawa M., Lechene C., Guidotti G. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem. 1977 Nov 10;252(21):7421–7423. [PubMed] [Google Scholar]
- Cantley L. C., Jr, Resh M. D., Guidotti G. Vanadate inhibits the red cell (Na+, K+) ATPase from the cytoplasmic side. Nature. 1978 Apr 6;272(5653):552–554. doi: 10.1038/272552a0. [DOI] [PubMed] [Google Scholar]
- Dupont Y., Bennett N. Vanadate inhibition of the Ca2+-dependent conformational change of the sarcoplasmic reticulum Ca2+-ATPase. FEBS Lett. 1982 Mar 22;139(2):237–240. doi: 10.1016/0014-5793(82)80860-0. [DOI] [PubMed] [Google Scholar]
- Erdmann E., Krawietz W., Phillipp G., Hackbarth I., Schmitz W., Scholz H. Stimulatory effect of vanadate on (Na+ + K+)-ATPase activity and on 3H-ouabain-binding in a cat heart cell membrane preparation. Nature. 1979 Mar 29;278(5703):459–461. doi: 10.1038/278459a0. [DOI] [PubMed] [Google Scholar]
- Erdmann E., Werdan K., Krawietz W., Schmitz W., Scholz H. Vanadate and its significance in biochemistry and pharmacology. Biochem Pharmacol. 1984 Apr 1;33(7):945–950. doi: 10.1016/0006-2952(84)90498-2. [DOI] [PubMed] [Google Scholar]
- Fleming W. W. The electrogenic Na+, K+-pump in smooth muscle: physiologic and pharmacologic significance. Annu Rev Pharmacol Toxicol. 1980;20:129–149. doi: 10.1146/annurev.pa.20.040180.001021. [DOI] [PubMed] [Google Scholar]
- Fox A. A., Borchard U., Neumann M. Effects of vanadate on isolated vascular tissue: biochemical and functional investigations. J Cardiovasc Pharmacol. 1983 Mar-Apr;5(2):309–316. doi: 10.1097/00005344-198303000-00024. [DOI] [PubMed] [Google Scholar]
- Garcia A. G., Jurkiewicz A., Jurkiewicz N. H. Contractile effect of vanadate and other vanadium compounds on the rat vas deferens. Eur J Pharmacol. 1981 Mar 5;70(1):17–23. doi: 10.1016/0014-2999(81)90427-1. [DOI] [PubMed] [Google Scholar]
- Gerthoffer W. T., Allen J. C. Characteristics of binding of [3H]ouabain to smooth muscle sodium-potassium adenosine triphosphatase and quantitation of sodium-potassium pump sites. J Pharmacol Exp Ther. 1981 Jun;217(3):692–696. [PubMed] [Google Scholar]
- Hudgins P. M., Bond G. H. Alteration by vanadate of contractility in vascular and intestinal smooth muscle preparations. Pharmacology. 1981;23(3):156–164. doi: 10.1159/000137544. [DOI] [PubMed] [Google Scholar]
- Marín J., Sánchez-Ferrer C. F., Salaices M., Rico I. Noradrenaline release induced by ouabain and vanadate in cat cerebral and peripheral arteries. Gen Pharmacol. 1986;17(5):581–584. doi: 10.1016/0306-3623(86)90098-4. [DOI] [PubMed] [Google Scholar]
- Myers T. D., Boerth R. C. Interactions of ouabain and vanadate with (Na+,K+)ATPase and isolated cardiac muscle. Biochem Biophys Res Commun. 1980 Sep 16;96(1):39–46. doi: 10.1016/0006-291x(80)91178-x. [DOI] [PubMed] [Google Scholar]
- Nayler R. A., Sparrow M. P. Mechanism of vanadate-induced contraction of airways smooth muscle of the guinea-pig. Br J Pharmacol. 1983 Sep;80(1):163–172. doi: 10.1111/j.1476-5381.1983.tb11062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nechay B. R. Mechanisms of action of vanadium. Annu Rev Pharmacol Toxicol. 1984;24:501–524. doi: 10.1146/annurev.pa.24.040184.002441. [DOI] [PubMed] [Google Scholar]
- Nielsen K. C., Owman C. Contractile response and amine receptor mechanisms in isolated middle cerebral artery of the cat. Brain Res. 1971 Mar 19;27(1):33–42. doi: 10.1016/0006-8993(71)90370-2. [DOI] [PubMed] [Google Scholar]
- O'Neal S. G., Rhoads D. B., Racker E. Vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase and other ATPases. Biochem Biophys Res Commun. 1979 Aug 13;89(3):845–850. doi: 10.1016/0006-291x(79)91855-2. [DOI] [PubMed] [Google Scholar]
- Ozaki H., Urakawa N. Effects of vanadate on mechanical responses and Na-K pump in vascular smooth muscle. Eur J Pharmacol. 1980 Dec 5;68(3):339–347. doi: 10.1016/0014-2999(80)90531-2. [DOI] [PubMed] [Google Scholar]
- Popescu L. M., Ignat P. Calmodulin-dependent Ca2+-pump ATPase of human smooth muscle sarcolemma. Cell Calcium. 1983 Oct;4(4):219–235. doi: 10.1016/0143-4160(83)90001-5. [DOI] [PubMed] [Google Scholar]
- Searle B. M., Higashino H., Khalil F., Bogden J. D., Tokushige A., Tamura H., Kino M., Aviv A. Vanadate effect on the Na,K-ATPase and the Na-K pump in in vitro-grown rat vascular smooth muscle cells. Circ Res. 1983 Aug;53(2):186–191. doi: 10.1161/01.res.53.2.186. [DOI] [PubMed] [Google Scholar]
- Shimada T., Shimamura K., Sunano S. Effects of sodium vanadate on various types of vascular smooth muscles. Blood Vessels. 1986;23(3):113–124. doi: 10.1159/000158628. [DOI] [PubMed] [Google Scholar]
- Svoboda P., Teisinger J., Pilăr J., Vyskocil F. Vanadyl (VO2+) and vanadate (VO-3) ions inhibit the brain microsomal Na,K-ATPase with similar affinities. Protection by transferrin and noradrenaline. Biochem Pharmacol. 1984 Aug 1;33(15):2485–2491. doi: 10.1016/0006-2952(84)90722-6. [DOI] [PubMed] [Google Scholar]
- Toda N. Mechanisms of ouabain-induced arterial muscle contraction. Am J Physiol. 1980 Aug;239(2):H199–H205. doi: 10.1152/ajpheart.1980.239.2.H199. [DOI] [PubMed] [Google Scholar]
- Ueda F., Karaki H., Urakawa N. Contractile effects of vanadate on monkey and rabbit tracheal smooth muscle. Arch Int Pharmacodyn Ther. 1985 Jul;276(1):120–132. [PubMed] [Google Scholar]
- Ueda F., Kishimoto T., Ozaki H., Urakawa N. Dual actions of vanadate on high K-induced contraction in guinea-pig taenia coli. Jpn J Pharmacol. 1982 Feb;32(1):149–157. doi: 10.1254/jjp.32.149. [DOI] [PubMed] [Google Scholar]
- Van Breemen C., Aaronson P., Loutzenhiser R. Sodium-calcium interactions in mammalian smooth muscle. Pharmacol Rev. 1978 Jun;30(2):167–208. [PubMed] [Google Scholar]
- Wibo M., Morel N., Godfraind T. Differentiation of Ca2+ pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle. Biochim Biophys Acta. 1981 Dec 21;649(3):651–660. doi: 10.1016/0005-2736(81)90170-x. [DOI] [PubMed] [Google Scholar]
- Wong S. K., Westfall D. P., Fedan J. S., Fleming W. W. The involvement of the sodium-potassium pump in postjunctional supersensitivity of the guinea-pig vas deferens as assessed by [3H]ouabain binding. J Pharmacol Exp Ther. 1981 Oct;219(1):163–169. [PubMed] [Google Scholar]
- Wong S. K., Westfall D. P., Menear D., Fleming W. W. Sodium-potassium pump sites, as assessed by [3H]-ouabain binding, in aorta and caudal artery of normotensive and spontaneously hypertensive rats. Blood Vessels. 1984;21(5):211–222. doi: 10.1159/000158514. [DOI] [PubMed] [Google Scholar]