Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Jan;93(1):165–175. doi: 10.1111/j.1476-5381.1988.tb11418.x

Cardiac and renovascular effects in the anaesthetized dog of BW A575C: a novel angiotensin converting enzyme inhibitor with beta-adrenoceptor blocking properties.

D Cambridge 1, M V Whiting 1, G Allan 1
PMCID: PMC1853785  PMID: 2894874

Abstract

1. In the anaesthetized open-chest dog, BW A575C (N-(1-(S)-carboxy-5-[4(3- isopropylamino-2-(R,S)-hydroxypropoxy)indole-2- carboxamido]pentyl)-(R,S)-alanyl-(S)-proline) causes a dose-dependent inhibition of the isoprenaline response (increased cardiac rate). In this preparation BW A575C is approximately 50 times less active than propranolol, and 500 times less active than pindolol at the cardiac beta 1-adrenoceptor. 2. At equieffective cardiac beta 1-adrenoceptor blocking doses in the anaesthetized, open-chest dog, BW A575C (5.0 mg kg-1, i.v.) significantly reduces diastolic blood pressure and reduces cardiac contractility and rate. By contrast, propranolol (0.1 mg kg-1, i.v.) and pindolol (0.01 mg kg-1, i.v.) have little effect on diastolic blood pressure, but significantly reduce cardiac contractility and rate. The effects of BW A575C on cardiac rate are not significantly different from those of propranolol and pindolol, but its effects on cardiac contractility are significantly less than those of propranolol. BW A575C also produces some increase in left ventricular internal dimensions at end-diastole. This small cardiac dilatation is not significantly different from that observed with pindolol but is significantly less than that of propranolol. 3. In the anaesthetized closed-chest dog, BW A575C causes a dose-dependent inhibition of the angiotensin I pressor response. In this preparation BW A575C is approximately equiactive with enalapril at preventing the pressor response due to conversion of exogenous angiotensin I to angiotensin II (inhibition of angiotensin converting enzyme (ACE)). 4. At equieffective ACE-inhibition doses in the anaesthetized, closed-chest dog, BW A575C (1.0 mg kg-1 by i.v. infusion) significantly reduces diastolic blood pressure, cardiac contractility and rate, whereas enalapril (1.0 mg kg-1 by i.v. infusion) only significantly reduces diastolic blood pressure. This blood pressure lowering effect of enalapril is not significantly different from that of BW A575C. In this preparation BW A575C and enalapril also significantly increase renal blood flow, and renal excretion of urine and Na+. There is however no significant difference between their renovascular effects. 5. These studies demonstrate that BW A575C produces changes in cardiac and renovascular function which can be ascribed to its being an ACE-inhibitor and a beta-adrenoceptor blocking agent. The combination of these pharmacological properties results in a fall in blood pressure without compromising either cardiac performance or renal function.

Full text

PDF
165

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Razzak M. Effect of some beta-adrenergic blocking drugs on the renal bloow flow in dogs. Arch Int Pharmacodyn Ther. 1977 Oct;229(2):227–234. [PubMed] [Google Scholar]
  2. Abrams W. B., Davies R. O., Ferguson R. K. Overview: the role of angiotensin-converting enzyme inhibitors in cardiovascular therapy. Fed Proc. 1984 Apr;43(5):1314–1321. [PubMed] [Google Scholar]
  3. Allan G., Cambridge D., Hardy G. W., Follenfant M. J. BW A575C, a chemically novel agent with angiotensin converting enzyme inhibitor and beta-adrenoceptor-blocking properties. Br J Pharmacol. 1987 Mar;90(3):609–615. doi: 10.1111/j.1476-5381.1987.tb11212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Antonaccio M. J., Harris D., Goldenberg H., High J. P., Rubin B. The effects of captopril, propranolol, and indomethacin on blood pressure and plasma renin activity in spontaneously hypertensive and normotensive rats. Proc Soc Exp Biol Med. 1979 Dec;162(3):429–433. doi: 10.3181/00379727-162-40697. [DOI] [PubMed] [Google Scholar]
  5. Biollaz J., Burnier M., Turini G. A., Brunner D. B., Porchet M., Gomez H. J., Jones K. H., Ferber F., Abrams W. B., Gavras H. Three new long-acting converting-enzyme inhibitors: relationship between plasma converting-enzyme activity and response to angiotensin I. Clin Pharmacol Ther. 1981 May;29(5):665–670. doi: 10.1038/clpt.1981.92. [DOI] [PubMed] [Google Scholar]
  6. Brunner H. R., Gavras H., Waeber B., Kershaw G. R., Turini G. A., Vukovich R. A., McKinstry D. N., Gavras I. Oral angiotensin-converting enzyme inhibitor in long-term treatment of hypertensive patients. Ann Intern Med. 1979 Jan;90(1):19–23. doi: 10.7326/0003-4819-90-1-19. [DOI] [PubMed] [Google Scholar]
  7. Buckingham R. E., Hamilton T. C. Comparison of the anti-hypertensive response to beta-adrenoceptor blocking drugs in intact and adrenal-demedullated spontaneously hypertensive rats. Br J Pharmacol. 1980 Apr;68(4):667–676. doi: 10.1111/j.1476-5381.1980.tb10859.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burden D. T., Hamilton T. C. Hypotensive responses following oral adminstration of beta-adrenoceptor blocking drugs to the conscious cat. Eur J Pharmacol. 1976 Jul;38(1):55–61. doi: 10.1016/0014-2999(76)90200-4. [DOI] [PubMed] [Google Scholar]
  9. Chamberlain D. A. Effects of beta adrenergic blockade on heart size. Am J Cardiol. 1966 Sep;18(3):321–328. doi: 10.1016/0002-9149(66)90049-x. [DOI] [PubMed] [Google Scholar]
  10. Davies R. O., Gomez H. J., Irvin J. D., Walker J. F. An overview of the clinical pharmacology of enalapril. Br J Clin Pharmacol. 1984;18 (Suppl 2):215S–229S. doi: 10.1111/j.1365-2125.1984.tb02601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fitzpatrick M. A., Julius S. Hemodynamic effects of angiotensin-converting enzyme inhibitors in essential hypertension: a review. J Cardiovasc Pharmacol. 1985;7 (Suppl 1):S35–S39. doi: 10.1097/00005344-198507001-00008. [DOI] [PubMed] [Google Scholar]
  12. Garvey H. L., Ram N. Comparative antihypertensive effects and tissue distribution of beta adrenergic blocking drugs. J Pharmacol Exp Ther. 1975 Jul;194(1):220–233. [PubMed] [Google Scholar]
  13. Hansson L. Beta-adrenergic blockade in essential hypertension. Effects of propranolol on hemodynamic parameters and plasma renin activity. Acta Med Scand Suppl. 1973;550:1–40. [PubMed] [Google Scholar]
  14. Hatton R., Clough D., Faulkner K., Conway J. Angiotensin-converting enzyme inhibitor resets baroreceptor reflexes in conscious dogs. Hypertension. 1981 Nov-Dec;3(6):676–681. doi: 10.1161/01.hyp.3.6.676. [DOI] [PubMed] [Google Scholar]
  15. Helfant R. H., Herman M. V. Abnormalities of left ventricular contraction induced by beta adrenergic blockade. Circulation. 1971 May;43(5):641–647. doi: 10.1161/01.cir.43.5.641. [DOI] [PubMed] [Google Scholar]
  16. Laubie M., Schiavi P., Vincent M., Schmitt H. Inhibition of angiotensin I-converting enzyme with S 9490: biochemical effects, interspecies differences, and role of sodium diet in hemodynamic effects. J Cardiovasc Pharmacol. 1984 Nov-Dec;6(6):1076–1082. [PubMed] [Google Scholar]
  17. Man in 't Veld A. J., Schalekamp M. A. Effects of 10 different beta-adrenoceptor antagonists on hemodynamics, plasma renin activity, and plasma norepinephrine in hypertension: the key role of vascular resistance changes in relation to partial agonist activity. J Cardiovasc Pharmacol. 1983;5 (Suppl 1):S30–S45. doi: 10.1097/00005344-198300051-00006. [DOI] [PubMed] [Google Scholar]
  18. McCaa R. E., Gillespie J. B. Effects of captopril and enalapril on sodium excretion and blood pressure in sodium-deficient dogs. Fed Proc. 1984 Apr;43(5):1336–1341. [PubMed] [Google Scholar]
  19. Meggs L. G., Hollenberg N. K. Converting enzyme inhibition and the kidney. Hypertension. 1980 Jul-Aug;2(4):551–557. doi: 10.1161/01.hyp.2.4.551. [DOI] [PubMed] [Google Scholar]
  20. Morton J. J., Tree M., Casals-Stenzel J. The effect of captopril on blood pressure and angiotensins I, II and III in sodium-depleted dogs: problems associated with the measurement of angiotensin II after inhibition of converting enzyme. Clin Sci (Lond) 1980 Jun;58(6):445–450. doi: 10.1042/cs0580445. [DOI] [PubMed] [Google Scholar]
  21. Nies A. S., Evans G. H., Shand D. G. Regional hemodynamic effects of beta-adrenergic blockade with propranolol in the unanesthetized primate. Am Heart J. 1973 Jan;85(1):97–102. doi: 10.1016/0002-8703(73)90531-0. [DOI] [PubMed] [Google Scholar]
  22. Nies A. S., McNeil J. S., Schrier R. W. Mechanism of increased sodium reabsorption during propranolol administration. Circulation. 1971 Oct;44(4):596–604. doi: 10.1161/01.cir.44.4.596. [DOI] [PubMed] [Google Scholar]
  23. Olsen M. E., Meydrech E. F. Physiological responses to angiotensin II infusion during chronic angiotensin converting enzyme inhibition in dogs on normal, low and high sodium intake. J Hypertens. 1985 Oct;3(5):517–525. [PubMed] [Google Scholar]
  24. Pickering T. G., Case D. B., Sullivan P. A., Laragh J. H. Comparison of antihypertensive and hormonal effects of captopril and propranolol at rest and during exercise. Am J Cardiol. 1982 Apr 21;49(6):1566–1568. doi: 10.1016/0002-9149(82)90392-7. [DOI] [PubMed] [Google Scholar]
  25. Prichard B. N., Gillam P. M. Treatment of hypertension with propranolol. Br Med J. 1969 Jan 4;1(5635):7–16. doi: 10.1136/bmj.1.5635.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schiffrin E. L., Gutkowska J., Genest J. Mechanism of Captopril-induced renin release in conscious rats. Proc Soc Exp Biol Med. 1981 Jul;167(3):327–332. doi: 10.3181/00379727-167-41173. [DOI] [PubMed] [Google Scholar]
  27. Scriabine A. Beta-adrenoceptor blocking drugs in hypertension. Annu Rev Pharmacol Toxicol. 1979;19:269–284. doi: 10.1146/annurev.pa.19.040179.001413. [DOI] [PubMed] [Google Scholar]
  28. Sullivan J. M., Adams D. F., Hollenberg N. K. beta-adrenergic blockade in essential hypertension: reduced renin release despite renal vasoconstriction. Circ Res. 1976 Oct;39(4):532–536. doi: 10.1161/01.res.39.4.532. [DOI] [PubMed] [Google Scholar]
  29. Ulrych M., Frohlich E. D., Dustan H. P., Page I. H. Immediate hemodynamic effects of beta-adrenergic blockade with propranolol in normotensive and hypertensive man. Circulation. 1968 Mar;37(3):411–416. doi: 10.1161/01.cir.37.3.411. [DOI] [PubMed] [Google Scholar]
  30. Wilkinson R. Beta-blockers and renal function. Drugs. 1982 Mar;23(3):195–206. doi: 10.2165/00003495-198223030-00002. [DOI] [PubMed] [Google Scholar]
  31. Zech P., Pozet N., Labeeuw M., Sassard J., Bernheim J., Pellet M., Traeger J. Acute renal effects of new beta-adrenergic receptor site blocking agents on renal function. Proc Eur Dial Transplant Assoc. 1976;12:203–209. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES