Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Mar;93(3):679–683. doi: 10.1111/j.1476-5381.1988.tb10326.x

Effects of diuretics on GABA-gated chloride current in frog isolated sensory neurones.

N Inomata 1, T Ishihara 1, N Akaike 1
PMCID: PMC1853826  PMID: 2453244

Abstract

1. Effects of three diuretics (furosemide, amiloride and alpha-human atrial natriuretic polypeptide (alpha-hANP] on GABA-activated chloride current (ICl) were investigated in frog isolated sensory neurones, following suppression of Na+, K+ and Ca2+ currents, by use of a 'concentration-clamp' technique. 2. Furosemide inhibited the GABA-activated ICl in a non-competitive manner and facilitated the inactivation phase, while amiloride inhibited the GABA response in a competitive manner, both inhibitions being concentration-dependent. Alpha-hANP had no effects on the GABA-induced ICl. 3. The reversal potential of GABA-activated ICl (EGABA) was not shifted in the presence of amiloride or furosemide. 4. The results suggest that amiloride may act at the GABA binding site while furosemide may act on the GABA-gated chloride channel.

Full text

PDF
679

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike N., Hattori K., Inomata N., Oomura Y. gamma-Aminobutyric-acid- and pentobarbitone-gated chloride currents in internally perfused frog sensory neurones. J Physiol. 1985 Mar;360:367–386. doi: 10.1113/jphysiol.1985.sp015622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akaike N., Inomata N., Tokutomi N. Contribution of chloride shifts to the fade of gamma-aminobutyric acid-gated currents in frog dorsal root ganglion cells. J Physiol. 1987 Oct;391:219–234. doi: 10.1113/jphysiol.1987.sp016735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Akaike N., Inoue M., Krishtal O. A. 'Concentration-clamp' study of gamma-aminobutyric-acid-induced chloride current kinetics in frog sensory neurones. J Physiol. 1986 Oct;379:171–185. doi: 10.1113/jphysiol.1986.sp016246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Akaike N., Maruyama T., Sikdar S. K., Yasui S. Sodium-dependent suppression of gamma-aminobutyric-acid-gated chloride currents in internally perfused frog sensory neurones. J Physiol. 1987 Nov;392:543–562. doi: 10.1113/jphysiol.1987.sp016796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brazy P. C., Gunn R. B. Furosemide inhibition of chloride transport in human red blood cells. J Gen Physiol. 1976 Dec;68(6):583–599. doi: 10.1085/jgp.68.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cantiello H. F., Ausiello D. A. Atrial natriuretic factor and cGMP inhibit amiloride-sensitive Na+ transport in the cultured renal epithelial cell line, LLC-PK1. Biochem Biophys Res Commun. 1986 Jan 29;134(2):852–860. doi: 10.1016/s0006-291x(86)80498-3. [DOI] [PubMed] [Google Scholar]
  7. Debinski W., Gutkowska J., Kuchel O., Racz K., Buu N. T., Cantin M., Genest J. ANF-like peptide(s) in the peripheral autonomic nervous system. Biochem Biophys Res Commun. 1986 Jan 14;134(1):279–284. doi: 10.1016/0006-291x(86)90559-0. [DOI] [PubMed] [Google Scholar]
  8. Feltz P., Rasminsky M. A model for the mode of action of GABA on primary afferent terminals: depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia. Neuropharmacology. 1974 Jun;13(6):553–563. doi: 10.1016/0028-3908(74)90145-2. [DOI] [PubMed] [Google Scholar]
  9. Gallagher J. P., Higashi H., Nishi S. Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J Physiol. 1978 Feb;275:263–282. doi: 10.1113/jphysiol.1978.sp012189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hamilton K. L., Eaton D. C. Single-channel recordings from amiloride-sensitive epithelial sodium channel. Am J Physiol. 1985 Sep;249(3 Pt 1):C200–C207. doi: 10.1152/ajpcell.1985.249.3.C200. [DOI] [PubMed] [Google Scholar]
  11. Hattori K., Akaike N., Oomura Y., Kuraoka S. Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons. Am J Physiol. 1984 Mar;246(3 Pt 1):C259–C265. doi: 10.1152/ajpcell.1984.246.3.C259. [DOI] [PubMed] [Google Scholar]
  12. Inoue M., Oomura Y., Yakushiji T., Akaike N. Intracellular calcium ions decrease the affinity of the GABA receptor. Nature. 1986 Nov 13;324(6093):156–158. doi: 10.1038/324156a0. [DOI] [PubMed] [Google Scholar]
  13. Ishizuka S., Hattori K., Akaike N. Separation of ionic currents in the somatic membrane of frog sensory neurons. J Membr Biol. 1984;78(1):19–28. doi: 10.1007/BF01872528. [DOI] [PubMed] [Google Scholar]
  14. Kangawa K., Matsuo H. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun. 1984 Jan 13;118(1):131–139. doi: 10.1016/0006-291x(84)91077-5. [DOI] [PubMed] [Google Scholar]
  15. Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
  16. Levy R. A. The role of GABA in primary afferent depolarization. Prog Neurobiol. 1977;9(4):211–267. doi: 10.1016/0301-0082(77)90002-8. [DOI] [PubMed] [Google Scholar]
  17. Misgeld U., Deisz R. A., Dodt H. U., Lux H. D. The role of chloride transport in postsynaptic inhibition of hippocampal neurons. Science. 1986 Jun 13;232(4756):1413–1415. doi: 10.1126/science.2424084. [DOI] [PubMed] [Google Scholar]
  18. Morii N., Nakao K., Sugawara A., Sakamoto M., Suda M., Shimokura M., Kiso Y., Kihara M., Yamori Y., Imura H. Occurrence of atrial natriuretic polypeptide in brain. Biochem Biophys Res Commun. 1985 Mar 15;127(2):413–419. doi: 10.1016/s0006-291x(85)80176-5. [DOI] [PubMed] [Google Scholar]
  19. Padjen A. L., Hashiguchi T. Primary afferent depolarization in frog spinal cord is associated with an increase in membrane conductance. Can J Physiol Pharmacol. 1983 Jun;61(6):626–631. doi: 10.1139/y83-096. [DOI] [PubMed] [Google Scholar]
  20. Saper C. B., Standaert D. G., Currie M. G., Schwartz D., Geller D. M., Needleman P. Atriopeptin-immunoreactive neurons in the brain: presence in cardiovascular regulatory areas. Science. 1985 Mar 1;227(4690):1047–1049. doi: 10.1126/science.2858127. [DOI] [PubMed] [Google Scholar]
  21. Schellenberg G. D., Anderson L., Cragoe E. J., Jr, Swanson P. D. Inhibition of synaptosomal membrane Na+-Ca2+ exchange transport by amiloride and amiloride analogues. Mol Pharmacol. 1985 May;27(5):537–543. [PubMed] [Google Scholar]
  22. Schellenberg G. D., Anderson L., Swanson P. D. Inhibition of Na+-Ca2+ exchange in rat brain by amiloride. Mol Pharmacol. 1983 Sep;24(2):251–258. [PubMed] [Google Scholar]
  23. Skofitsch G., Jacobowitz D. M., Eskay R. L., Zamir N. Distribution of atrial natriuretic factor-like immunoreactive neurons in the rat brain. Neuroscience. 1985 Dec;16(4):917–948. doi: 10.1016/0306-4522(85)90106-x. [DOI] [PubMed] [Google Scholar]
  24. Soltoff S. P., Mandel L. J. Amiloride directly inhibits the Na,K-ATPase activity of rabbit kidney proximal tubules. Science. 1983 May 27;220(4600):957–958. doi: 10.1126/science.6302840. [DOI] [PubMed] [Google Scholar]
  25. Tanaka I., Misono K. S., Inagami T. Atrial natriuretic factor in rat hypothalamus, atria and plasma: determination by specific radioimmunoassay. Biochem Biophys Res Commun. 1984 Oct 30;124(2):663–668. doi: 10.1016/0006-291x(84)91606-1. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES