Abstract
1. An investigation was undertaken to examine the effect of calcium channel blockade, induced by amlodipine, on the ability of the renal sympathetic nerves to cause an antidiuresis and anti-natriuresis in normotensive Sprague Dawley and spontaneously hypertensive rats anaesthetized with pentobarbitone. 2. Low frequency renal nerve stimulation in normotensive rats, which did not change renal blood flow, caused a 15% reduction in glomerular filtration rate and was associated with falls in urine flow of 37%, absolute sodium excretion of 47%, and fractional sodium excretion of 38%. The magnitude of these renal excretory changes was unaffected by prior administration of amlodipine at either 200 micrograms kg-1 plus 50 micrograms kg-1 h-1 or 400 micrograms kg-1 plus 100 micrograms kg-1 h-1. Amlodipine given in the higher dose, decreased basal levels of blood pressure and increased basal urine flow and sodium excretion. 3. In spontaneously hypertensive rats, renal nerve stimulation minimally affected renal haemodynamics but decreased urine flow, absolute and fractional sodium excretion by 29%, 31% and 24%, respectively. 4. Similar renal nerve stimulation in spontaneously hypertensive rats given amlodipine at 200 micrograms kg-1 plus 50 micrograms kg-1 h-1 or 400 micrograms kg-1 plus 100 micrograms kg-1 h-1 caused minimal changes in renal haemodynamics and in the excretion of water and sodium. The higher dose of drug resulted in decreased blood pressure and increased basal rates of urine flow and sodium excretion.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barajas L. Innervation of the renal cortex. Fed Proc. 1978 Apr;37(5):1192–1201. [PubMed] [Google Scholar]
- Barajas L., Powers K., Wang P. Innervation of the renal cortical tubules: a quantitative study. Am J Physiol. 1984 Jul;247(1 Pt 2):F50–F60. doi: 10.1152/ajprenal.1984.247.1.F50. [DOI] [PubMed] [Google Scholar]
- Bencsáth P., Szénási G., Takács L. Water and electrolyte transport in Henle's loop and distal tubule after renal sympathectomy in the rat. Am J Physiol. 1985 Aug;249(2 Pt 2):F308–F314. doi: 10.1152/ajprenal.1985.249.2.F308. [DOI] [PubMed] [Google Scholar]
- Brown B., Churchill P. Renal effects of methoxyverapamil in anesthetized rats. J Pharmacol Exp Ther. 1983 May;225(2):372–377. [PubMed] [Google Scholar]
- Burges R. A., Gardiner D. G., Gwilt M., Higgins A. J., Blackburn K. J., Campbell S. F., Cross P. E., Stubbs J. K. Calcium channel blocking properties of amlodipine in vascular smooth muscle and cardiac muscle in vitro: evidence for voltage modulation of vascular dihydropyridine receptors. J Cardiovasc Pharmacol. 1987 Jan;9(1):110–119. [PubMed] [Google Scholar]
- DiBona G. F., Sawin L. L. Effect of renal nerve stimulation on NaCl and H2O transport in Henle's loop of the rat. Am J Physiol. 1982 Dec;243(6):F576–F580. doi: 10.1152/ajprenal.1982.243.6.F576. [DOI] [PubMed] [Google Scholar]
- DiBona G. F., Sawin L. L. Role of renal alpha 2-adrenergic receptors in spontaneously hypertensive rats. Hypertension. 1987 Jan;9(1):41–48. doi: 10.1161/01.hyp.9.1.41. [DOI] [PubMed] [Google Scholar]
- Godfraind T., Miller R., Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol Rev. 1986 Dec;38(4):321–416. [PubMed] [Google Scholar]
- Graham R. M., Pettinger W. A., Sagalowsky A., Brabson J., Gandler T. Renal alpha-adrenergic receptor abnormality in the spontaneously hypertensive rat. Hypertension. 1982 Nov-Dec;4(6):881–887. doi: 10.1161/01.hyp.4.6.881. [DOI] [PubMed] [Google Scholar]
- Herod J. J., Johns E. J. The influence of diltiazem and nifedipine on the haemodynamic and tubular responses of the rat kidney to renal nerve stimulation. J Auton Pharmacol. 1985 Sep;5(3):251–260. doi: 10.1111/j.1474-8673.1985.tb00126.x. [DOI] [PubMed] [Google Scholar]
- Hesse I. F., Johns E. J. The subtype of alpha-adrenoceptor involved in the neural control of renal tubular sodium reabsorption in the rabbit. J Physiol. 1984 Jul;352:527–538. doi: 10.1113/jphysiol.1984.sp015308. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johns E. J., Lewis B. A., Singer B. The sodium-retaining effect of renal nerve activity in the cat: role of angiotensin formation. Clin Sci Mol Med. 1976 Jul;51(1):93–102. doi: 10.1042/cs0510093. [DOI] [PubMed] [Google Scholar]
- Johns E. J., Manitius J. A study in the rat of the renal actions of nitrendipine and diltiazem on the adrenergic regulation of calcium and sodium reabsorption. Br J Pharmacol. 1986 Sep;89(1):99–107. doi: 10.1111/j.1476-5381.1986.tb11125.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johns E. J., Manitius J. An investigation into the alpha-adrenoceptor mediating renal nerve-induced calcium reabsorption by the rat kidney. Br J Pharmacol. 1986 Sep;89(1):91–97. doi: 10.1111/j.1476-5381.1986.tb11124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johns E. J. The influence of diltiazem and nifedipine on renal function in the rat. Br J Pharmacol. 1985 Mar;84(3):707–713. doi: 10.1111/j.1476-5381.1985.tb16153.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kazda S., Garthoff B., Knorr A. Interference of the calcium antagonist nisoldipine with the abnormal response of vessels from hypertensive rats to alpha-adrenergic stimulation. J Cardiovasc Pharmacol. 1985;7 (Suppl 6):S61–S65. doi: 10.1097/00005344-198500076-00011. [DOI] [PubMed] [Google Scholar]
- Loutzenhiser R., Epstein M. Effects of calcium antagonists on renal hemodynamics. Am J Physiol. 1985 Nov;249(5 Pt 2):F619–F629. doi: 10.1152/ajprenal.1985.249.5.F619. [DOI] [PubMed] [Google Scholar]
- Nordlander M., Di Bona G. F., Ljung B., Yao T., Thorén P. Renal and cardiovascular effects of acute and chronic administration of felodipine to SHR. Eur J Pharmacol. 1985 Jul 11;113(1):25–36. doi: 10.1016/0014-2999(85)90339-5. [DOI] [PubMed] [Google Scholar]
- Osborn J. L., Holdaas H., Thames M. D., DiBona G. F. Renal adrenoceptor mediation of antinatriuretic and renin secretion responses to low frequency renal nerve stimulation in the dog. Circ Res. 1983 Sep;53(3):298–305. doi: 10.1161/01.res.53.3.298. [DOI] [PubMed] [Google Scholar]
- Pelayo J. C., Ziegler M. G., Jose P. A., Blantz R. C. Renal denervation in the rat: analysis of glomerular and proximal tubular function. Am J Physiol. 1983 Jan;244(1):F70–F77. doi: 10.1152/ajprenal.1983.244.1.F70. [DOI] [PubMed] [Google Scholar]
- Pettinger W. A., Sanchez A., Saavedra J., Haywood J. R., Gandler T., Rodes T. Altered renal alpha 2-adrenergic receptor regulation in genetically hypertensive rats. Hypertension. 1982 May-Jun;4(3 Pt 2):188–192. [PubMed] [Google Scholar]
- Sánchez A., Vidal M. J., Martínez-Sierra R., Sáiz J. Ontogeny of renal alpha-1 and alpha-2 adrenoceptors in the spontaneously hypertensive rat. J Pharmacol Exp Ther. 1986 Jun;237(3):972–979. [PubMed] [Google Scholar]
- Vanhoutte P. M., Rimele T. J. Calcium and alpha-adrenoceptors in activation of vascular smooth muscle. J Cardiovasc Pharmacol. 1982;4 (Suppl 3):S280–S286. [PubMed] [Google Scholar]
- van Zwieten P. A., Timmermans P. B., Thoolen M. J., Wilffert B., de Jonge A. Calcium dependency of vasoconstriction mediated by alpha 1- and alpha 2-adrenoceptors. J Cardiovasc Pharmacol. 1985;7 (Suppl 6):S113–S120. doi: 10.1097/00005344-198500076-00019. [DOI] [PubMed] [Google Scholar]
