Abstract
1. The pharmacological action of the L- and D-enantiomers of lysophosphatidylserine has been studied in vivo by following the increase in blood and brain glucose content caused by this phospholipid in mice. Preliminary experiments have confirmed that these effects are the consequence of lysophosphatidylserine-induced mast cell activation since they are not observed in mast cell-deficient mice bearing the W/Wv genotype. 2. Maximal hyperglycaemic response and brain glucose accumulation occur at 10 mg kg-1 lysophosphatidyl-L-serine (i.v.). Half-maximal effect is at 3.5 mg kg-1. Lysophosphatidyl-D-serine at doses of up to 25 mg kg-1 i.v. elicits 40% (blood glucose) and 60% (brain glucose) of the maximal effect. The difference in activity between the two enantiomers is also observed in the desensitization to lysophosphatidylserine occurring when this phospholipid is administered by the oral route. 3. Lysophosphatidyl-L-serine is more active than the D-enantiomer in mouse isolated peritoneal mast cells. Activity ratios of 10 are observed between 20 and 50% histamine release. Similar results are obtained with rat isolated peritoneal mast cells. 4. It is concluded that the configuration of the alpha carbon atom of serine influences the activity of lysophosphatidylserine in vivo and in vitro. Thus, the appropriate position of the serine amino group is required for optimal interaction of the phospholipid head group and a receptor in the mast cell membrane.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bigon E., Boarato E., Bruni A., Leon A., Toffano G. Pharmacological effects of phosphatidylserine liposomes: the role of lysophosphatidylserine. Br J Pharmacol. 1979 Dec;67(4):611–616. doi: 10.1111/j.1476-5381.1979.tb08708.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boarato E., Mietto L., Toffano G., Bigon E., Bruni A. Different responses of rodent mast cells to lysophosphatidylserine. Agents Actions. 1984 Jun;14(5-6):613–618. doi: 10.1007/BF01978895. [DOI] [PubMed] [Google Scholar]
- Bruni A., Bigon E., Battistella A., Boarato E., Mietto L., Toffano G. Lysophosphatidylserine as histamine releaser in mice and rats. Agents Actions. 1984 Jun;14(5-6):619–625. doi: 10.1007/BF01978896. [DOI] [PubMed] [Google Scholar]
- Bruni A., Bigon E., Boarato E., Mietto L., Leon A., Toffano G. Interaction between nerve growth factor and lysophosphatidylserine on rat peritoneal mast cells. FEBS Lett. 1982 Feb 22;138(2):190–192. doi: 10.1016/0014-5793(82)80438-9. [DOI] [PubMed] [Google Scholar]
- Bruni A., Toffano G. Lysophosphatidylserine, a short-lived intermediate with plasma membrane regulatory properties. Pharmacol Res Commun. 1982 Jun;14(6):469–484. doi: 10.1016/s0031-6989(82)80038-6. [DOI] [PubMed] [Google Scholar]
- Comfurius P., Zwaal R. F. The enzymatic synthesis of phosphatidylserine and purification by CM-cellulose column chromatography. Biochim Biophys Acta. 1977 Jul 20;488(1):36–42. doi: 10.1016/0005-2760(77)90120-5. [DOI] [PubMed] [Google Scholar]
- Foreman J. C., Garland L. G. Desensitization in the process of histamine secretion induced by antigen and dextran. J Physiol. 1974 Jun;239(2):381–391. doi: 10.1113/jphysiol.1974.sp010574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holub B. J., Piekarski J. The formation of phosphatidylinositol by acylation of 2-acyl-sn-glycero-3-phosphorylinositol in rat liver microsomes. Lipids. 1979 Jun;14(6):529–532. doi: 10.1007/BF02533526. [DOI] [PubMed] [Google Scholar]
- Horigome K., Tamori-Natori Y., Inoue K., Nojima S. Effect of serine phospholipid structure on the enhancement of concanavalin A-induced degranulation in rat mast cells. J Biochem. 1986 Sep;100(3):571–579. doi: 10.1093/oxfordjournals.jbchem.a121748. [DOI] [PubMed] [Google Scholar]
- Kitamura Y., Go S., Hatanaka K. Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood. 1978 Aug;52(2):447–452. [PubMed] [Google Scholar]
- Martin T. W., Lagunoff D. Interactions of lysophospholipids and mast cells. Nature. 1979 May 17;279(5710):250–252. doi: 10.1038/279250a0. [DOI] [PubMed] [Google Scholar]
- Palatini P., Dabbeni-Sala F., Bruni A. Reactivation of a phospholipid-depleted sodium, potassium-stimulated ATPase. Biochim Biophys Acta. 1972 Nov 2;288(2):413–422. doi: 10.1016/0005-2736(72)90262-3. [DOI] [PubMed] [Google Scholar]
- SHORE P. A., BURKHALTER A., COHN V. H., Jr A method for the fluorometric assay of histamine in tissues. J Pharmacol Exp Ther. 1959 Nov;127:182–186. [PubMed] [Google Scholar]
- Smith G. A., Hesketh T. R., Plumb R. W., Metcalfe J. C. The exogenous lipid requirement for histamine release from rat peritoneal mast cells stimulated by concanavalin A. FEBS Lett. 1979 Sep 1;105(1):58–62. doi: 10.1016/0014-5793(79)80887-x. [DOI] [PubMed] [Google Scholar]
- Takai Y., Kishimoto A., Iwasa Y., Kawahara Y., Mori T., Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem. 1979 May 25;254(10):3692–3695. [PubMed] [Google Scholar]
- Tamori-Natori Y., Horigome K., Inoue K., Nojima S. Metabolism of lysophosphatidylserine, a potentiator of histamine release in rat mast cells. J Biochem. 1986 Sep;100(3):581–590. doi: 10.1093/oxfordjournals.jbchem.a121749. [DOI] [PubMed] [Google Scholar]
- Voelker D. R. Phosphatidylserine functions as the major precursor of phosphatidylethanolamine in cultured BHK-21 cells. Proc Natl Acad Sci U S A. 1984 May;81(9):2669–2673. doi: 10.1073/pnas.81.9.2669. [DOI] [PMC free article] [PubMed] [Google Scholar]