Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Mar;93(3):515–524. doi: 10.1111/j.1476-5381.1988.tb10306.x

Endothelium-dependent hyperpolarization of canine coronary smooth muscle.

M Feletou 1, P M Vanhoutte 1
PMCID: PMC1853853  PMID: 2453240

Abstract

1. Experiments were designed to determine whether endothelium-dependent relaxing factor(s) released by acetylcholine from the canine femoral artery influences the membrane potential of coronary arterial smooth muscle. 2. The membrane potential was recorded in small canine coronary arteries (internal diameter less than or equal to 500 micron; without endothelium) by means of intracellular microelectrodes. The organ bath also contained a strip of left descending coronary artery without endothelium in which isometric force was measured to bioassay relaxing factor(s) as well as segments of femoral artery with endothelium, which served as the source of endothelium-derived relaxing factor(s). 3. Acetylcholine induced endothelium-dependent, transient hyperpolarizations and relaxations that were not affected by indomethacin. 4. Inhibition of the sodium-potassium pump by ouabain or potassium-free solution did not inhibit the relaxation to acetylcholine but prevented the corresponding hyperpolarization. 5. Activation of the sodium-potassium pump of the smooth muscle cells by readmission of potassium ions after incubation in potassium-free solution caused relaxation and marked hyperpolarization. 6. These results suggest that endothelium-derived relaxing factor(s) induces hyperpolarization of vascular smooth muscle of the canine coronary artery, possibly by activation of sodium-potassium pumping, but that this effect on the cell membrane may only partially explain endothelium-dependent relaxations evoked by acetylcholine.

Full text

PDF
515

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belardinelli L., Harder D., Sperelakis N., Rubio R., Berne R. M. Cardiac glycoside stimulation of inward Ca++ current in vascular smooth muscle of canine coronary artery. J Pharmacol Exp Ther. 1979 Apr;209(1):62–66. [PubMed] [Google Scholar]
  2. Bolton T. B., Clapp L. H. Endothelial-dependent relaxant actions of carbachol and substance P in arterial smooth muscle. Br J Pharmacol. 1986 Apr;87(4):713–723. doi: 10.1111/j.1476-5381.1986.tb14589.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bolton T. B., Lang R. J., Takewaki T. Mechanisms of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J Physiol. 1984 Jun;351:549–572. doi: 10.1113/jphysiol.1984.sp015262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bose D. Mechanism of inhibition of smooth muscle tension in guinea-pig taenia coli by ouabain. Can J Physiol Pharmacol. 1974 Aug;52(4):898–901. doi: 10.1139/y74-116. [DOI] [PubMed] [Google Scholar]
  5. Cohen R. A., Shepherd J. T., Vanhoutte P. M. Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science. 1983 Jul 15;221(4607):273–274. doi: 10.1126/science.6574604. [DOI] [PubMed] [Google Scholar]
  6. De Mey J. G., Vanhoutte P. M. Interaction between Na+,K+ exchanges and the direct inhibitory effect of acetylcholine on canine femoral arteries. Circ Res. 1980 Jun;46(6):826–836. doi: 10.1161/01.res.46.6.826. [DOI] [PubMed] [Google Scholar]
  7. De Mey J. G., Vanhoutte P. M. Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries. J Physiol. 1981 Jul;316:347–355. doi: 10.1113/jphysiol.1981.sp013792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fleming W. W. The electrogenic Na+, K+-pump in smooth muscle: physiologic and pharmacologic significance. Annu Rev Pharmacol Toxicol. 1980;20:129–149. doi: 10.1146/annurev.pa.20.040180.001021. [DOI] [PubMed] [Google Scholar]
  9. Furchgott R. F., Jothianandan D., Cherry P. D. Endothelium-dependent responses: the last three years. Bibl Cardiol. 1984;(38):1–15. [PubMed] [Google Scholar]
  10. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  11. Griffith T. M., Edwards D. H., Lewis M. J., Newby A. C., Henderson A. H. The nature of endothelium-derived vascular relaxant factor. Nature. 1984 Apr 12;308(5960):645–647. doi: 10.1038/308645a0. [DOI] [PubMed] [Google Scholar]
  12. Haddy F. J. Potassium effects on contraction in arterial smooth muscle mediated by Na+, K+-ATPase. Fed Proc. 1983 Feb;42(2):239–245. [PubMed] [Google Scholar]
  13. Harder D. R., Belardinelli L., Sperelakis N., Rubio R., Berne R. M. Differential effects of adenosine and nitroglycerin on the action potentials of large and small coronary arteries. Circ Res. 1979 Feb;44(2):176–182. doi: 10.1161/01.res.44.2.176. [DOI] [PubMed] [Google Scholar]
  14. Hermsmeyer K. Integration of mechanisms in single vascular muscle cells. Fed Proc. 1983 Feb;42(2):269–270. [PubMed] [Google Scholar]
  15. Hermsmeyer K. Sodium pump hyperpolarization-relaxation in rat caudal artery. Fed Proc. 1983 Feb;42(2):246–252. [PubMed] [Google Scholar]
  16. Holzmann S. Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J Cyclic Nucleotide Res. 1982;8(6):409–419. [PubMed] [Google Scholar]
  17. Ito Y., Kitamura K., Kuriyama H. Effects of acetylcholine and catecholamines on the smooth muscle cell of the porcine coronary artery. J Physiol. 1979 Sep;294:595–611. doi: 10.1113/jphysiol.1979.sp012948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Itoh T., Kajiwara M., Kitamura K., Kuriyama H. Roles of stored calcium on the mechanical response evoked in smooth muscle cells of the porcine coronary artery. J Physiol. 1982 Jan;322:107–125. doi: 10.1113/jphysiol.1982.sp014026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kalsner S. Cholinergic mechanisms in human coronary artery preparations: implications of species differences. J Physiol. 1985 Jan;358:509–526. doi: 10.1113/jphysiol.1985.sp015564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kitamura K., Kuriyama H. Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea-pig. J Physiol. 1979 Aug;293:119–133. doi: 10.1113/jphysiol.1979.sp012881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kuriyama H., Suzuki H. The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery. Br J Pharmacol. 1978 Dec;64(4):493–501. doi: 10.1111/j.1476-5381.1978.tb17310.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moncada S., Vane J. R. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev. 1978 Sep;30(3):293–331. [PubMed] [Google Scholar]
  23. Rapoport R. M., Murad F. Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: role of cyclic GMP. J Cyclic Nucleotide Protein Phosphor Res. 1983;9(4-5):281–296. [PubMed] [Google Scholar]
  24. Rapoport R. M., Schwartz K., Murad F. Effects of Na+,K+-pump inhibitors and membrane depolarizing agents on acetylcholine-induced endothelium-dependent relaxation and cyclic GMP accumulation in rat aorta. Eur J Pharmacol. 1985 Apr 2;110(2):203–209. doi: 10.1016/0014-2999(85)90212-2. [DOI] [PubMed] [Google Scholar]
  25. Rubanyi G. M., Lorenz R. R., Vanhoutte P. M. Bioassay of endothelium-derived relaxing factor(s): inactivation by catecholamines. Am J Physiol. 1985 Jul;249(1 Pt 2):H95–101. doi: 10.1152/ajpheart.1985.249.1.H95. [DOI] [PubMed] [Google Scholar]
  26. Rubanyi G., Vanhoutte P. M. Inhibitors of prostaglandin synthesis augment beta-adrenergic responsiveness in canine coronary arteries. Circ Res. 1985 Jan;56(1):117–125. doi: 10.1161/01.res.56.1.117. [DOI] [PubMed] [Google Scholar]
  27. Webb R. C., Bohr D. F. Potassium-induced relaxation as an indicator of Na+-K+ ATPase activity in vascular smooth muscle. Blood Vessels. 1978;15(1-3):198–207. doi: 10.1159/000158166. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES