Abstract
1. We have previously observed that manipulation of Na+ availability during passive in vitro sensitization altered electrophysiological and contractile changes of airway smooth muscle cells. The purpose of this study was to establish whether interference with Na+ influx during sensitization also influences the response of airway smooth muscle, both in vivo and in vitro, to a specific antigen challenge. 2. Isolated segments of trachea which had been sensitized to ovalbumin in the presence of the Na+ channel-blocking agent amiloride (10(-5) M) showed no electrical or contractile response to ovalbumin in spite of their ability to respond to histamine (10(-5) M). 3. Airway smooth muscle preparations sensitized to ovalbumin in a Na+-deficient medium failed to show any contractile response after exposure to ovalbumin and only a small depolarization of airway smooth muscle cells was detected. 4. Guinea-pigs were passively sensitized in vivo either in the absence of, or following pretreatment with, amiloride (1 mg kg-1 s.c.). These animals were then exposed to an ovalbumin inhalation challenge and both lung resistance (RL) and dynamic lung compliance (Cdyn) were measured. 5. After an inhalation challenge of sensitized animals, we observed a significant increase in lung resistance (RL) achieving a maximum of 489% of the baseline values and a decrease in dynamic lung compliance (Cdyn). Twenty min after ovalbumin challenge Cdyn was equivalent to 20% of baseline values. 6. In animals pretreated with amiloride during sensitization, the inhalation challenge caused only a small increase in RL achieving a maximum increase of 148% of baseline values, and a small decrease in Cdyn.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF![884](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/1853902/c68dd9620b9b/brjpharm00293-0166.png)
![885](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/1853902/261b6d5aef5d/brjpharm00293-0167.png)
![886](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/1853902/de64f02ed7bc/brjpharm00293-0168.png)
![887](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/1853902/7e19f157296f/brjpharm00293-0169.png)
![888](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/1853902/d307966e54b4/brjpharm00293-0170.png)
![889](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/1853902/b29006ad64b0/brjpharm00293-0171.png)
![890](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/1853902/6696ca162fc2/brjpharm00293-0172.png)
![891](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/1853902/547d9e1fd64c/brjpharm00293-0173.png)
![892](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f751/1853902/411be95ce5f2/brjpharm00293-0174.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOYD I. A., MARTIN A. R. Spontaneous subthreshold activity at mammalian neural muscular junctions. J Physiol. 1956 Apr 27;132(1):61–73. doi: 10.1113/jphysiol.1956.sp005502. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benos D. J. Amiloride: a molecular probe of sodium transport in tissues and cells. Am J Physiol. 1982 Mar;242(3):C131–C145. doi: 10.1152/ajpcell.1982.242.3.C131. [DOI] [PubMed] [Google Scholar]
- Bentley P. J. Amiloride: a potent inhibitor of sodium transport across the toad bladder. J Physiol. 1968 Mar;195(2):317–330. doi: 10.1113/jphysiol.1968.sp008460. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyd R. L., Mangos J. A. Pulmonary mechanisms of the normal ferret. J Appl Physiol Respir Environ Exerc Physiol. 1981 Apr;50(4):799–804. doi: 10.1152/jappl.1981.50.4.799. [DOI] [PubMed] [Google Scholar]
- Cuthbert A. W., Shum W. K. Amiloride and the sodium channel. Naunyn Schmiedebergs Arch Pharmacol. 1974;281(3):261–269. doi: 10.1007/BF00500595. [DOI] [PubMed] [Google Scholar]
- Gombos E. A., Freis E. D., Moghadam A. Effects of MK-870 in normal subjects and hypertensive patients. N Engl J Med. 1966 Dec 1;275(22):1215–1220. doi: 10.1056/NEJM196612012752202. [DOI] [PubMed] [Google Scholar]
- Hulbert W. C., McLean T., Wiggs B., Paré P. D., Hogg J. C. Histamine dose-response curves in guinea pigs. J Appl Physiol (1985) 1985 Feb;58(2):625–634. doi: 10.1152/jappl.1985.58.2.625. [DOI] [PubMed] [Google Scholar]
- MONGAR J. L., SCHILD H. O. A study of the mechanism of passive sensitization. J Physiol. 1960 Mar;150:546–564. doi: 10.1113/jphysiol.1960.sp006404. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCaig D. J., Souhrada J. F. Alteration of electrophysiological properties of airway smooth muscle from sensitized guinea-pigs. Respir Physiol. 1980 Jul;41(1):49–60. doi: 10.1016/0034-5687(80)90022-5. [DOI] [PubMed] [Google Scholar]
- Souhrada M., Souhrada J. F. A transient calcium influx into airway smooth muscle cells induced by immunization. Respir Physiol. 1987 Mar;67(3):323–334. doi: 10.1016/0034-5687(87)90062-4. [DOI] [PubMed] [Google Scholar]
- Souhrada M., Souhrada J. F. Immunologically induced alterations of airway smooth muscle cell membrane. Science. 1984 Aug 17;225(4663):723–725. doi: 10.1126/science.6087455. [DOI] [PubMed] [Google Scholar]
- Souhrada M., Souhrada J. F. Mast cells and antigen response of airway smooth muscle. Respiration. 1983 May-Jun;44(3):215–224. doi: 10.1159/000194551. [DOI] [PubMed] [Google Scholar]
- Souhrada M., Souhrada J. F. Reassessment of electrophysiological and contractile characteristics of sensitized airway smooth muscle. Respir Physiol. 1981 Oct;46(1):17–27. doi: 10.1016/0034-5687(81)90065-7. [DOI] [PubMed] [Google Scholar]
- Souhrada M., Souhrada J. F. Sensitization-induced sodium influx in airway smooth muscle cells of guinea pigs. Respir Physiol. 1985 May;60(2):157–168. doi: 10.1016/0034-5687(85)90100-8. [DOI] [PubMed] [Google Scholar]
- Taylor G. S., Paton D. M., Daniel E. E. Evidence for an electrogenic sodium pump in smooth muscle. Life Sci. 1969 Jul 1;8(13):769–773. doi: 10.1016/0024-3205(69)90268-9. [DOI] [PubMed] [Google Scholar]
- Young J. D., Unkeless J. C., Kaback H. R., Cohn Z. A. Macrophage membrane potential changes associated with gamma 2b/gamma 1 Fc receptor-ligand binding. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1357–1361. doi: 10.1073/pnas.80.5.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]