Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Aug;94(4):1051–1056. doi: 10.1111/j.1476-5381.1988.tb11621.x

Identification of two taurine receptor subtypes on the primary afferent terminal of frog spinal cord.

Y Kudo 1, E Akiyoshi 1, H Akagi 1
PMCID: PMC1854083  PMID: 2850054

Abstract

1. Effects of taurine on primary afferent terminals in the frog spinal cord were examined by a sucrose-gap method applied to a dorsal root (9th or 10th segment). 2. In a normal Ringer solution, taurine (1 mM, applied for 5s at a rate of 0.04 ml s-1, 0.2 mumol) caused a hyperpolarization, but a higher concentration (10 mM, applied at the same rate, 2.0 mumol) caused a biphasic response consisting of a hyperpolarization followed by a slow onset depolarization. A similar biphasic response could also be observed in tetrodotoxin-treated preparations. 3. When the concentration of extracellular Mg2+ was increased up to 9.0 mM, the depolarizing response to taurine was augmented. The rate of the augmentation was dependent upon the extracellular Mg2+ concentration. 4. The depolarizing effect was selectively antagonized by bicuculline in concentrations (10-30 microM) that had no significant antagonizing action on gamma-aminobutyric acid (GABA)-induced depolarization. On the other hand the hyperpolarizing effect of taurine was selectively reduced by strychnine (0.1 microM) which had no antagonizing effect on responses to glycine. 5. These results suggest that in the frog spinal cord there are at least two subtypes of taurine receptor whose pharmacological profiles resemble GABA and glycine receptors in the mammalian central nervous system, and whose sensitivity may be modulated by extracellular Mg2+.

Full text

PDF
1051

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ault B., Evans R. H., Francis A. A., Oakes D. J., Watkins J. C. Selective depression of excitatory amino acid induced depolarizations by magnesium ions in isolated spinal cord preparations. J Physiol. 1980 Oct;307:413–428. doi: 10.1113/jphysiol.1980.sp013443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barker J. L., Nicoll R. A., Padjen A. Studies on convulsants in the isolated frog spinal cord. I. Antagonism of amino acid responses. J Physiol. 1975 Mar;245(3):521–536. doi: 10.1113/jphysiol.1975.sp010859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barker J. L., Nicoll R. A., Padjen A. Studies on convulsants in the isolated frog spinal cord. II. Effects on root potentials. J Physiol. 1975 Mar;245(3):537–548. doi: 10.1113/jphysiol.1975.sp010860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Curtis D. R., Davies J., Game C. J., Johnston G. A., McCulloch R. M. Central actions of shikimin and tutin. Brain Res. 1973 Dec 7;63:419–423. doi: 10.1016/0006-8993(73)90116-9. [DOI] [PubMed] [Google Scholar]
  5. Curtis D. R., Duggan A. W., Felix D., Johnston G. A., McLennan H. Antagonism between bicuculline and GABA in the cat brain. Brain Res. 1971 Oct 8;33(1):57–73. doi: 10.1016/0006-8993(71)90305-2. [DOI] [PubMed] [Google Scholar]
  6. Evans R. H., Francis A. A., Watkins J. C. Bimodal action of glycine on frog spinal motoneurones. Brain Res. 1976 Dec 24;118(3):395–401. doi: 10.1016/0006-8993(76)90307-3. [DOI] [PubMed] [Google Scholar]
  7. Haas H. L., Hösli L. The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline. Brain Res. 1973 Mar 30;52:399–402. doi: 10.1016/0006-8993(73)90680-x. [DOI] [PubMed] [Google Scholar]
  8. Kaczmarek L. K., Adey W. R. Factors affecting the release of (14C)taurine from cat brain: the electrical effects of taurine on normal and seizure prone cortex. Brain Res. 1974 Aug 9;76(1):83–94. doi: 10.1016/0006-8993(74)90515-0. [DOI] [PubMed] [Google Scholar]
  9. Kudo Y., Abe N., Goto S., Fukuda H. The chloride-dependent depression by GABA in the frog spinal cord. Eur J Pharmacol. 1975 Jun-Jul;32(02):251–259. doi: 10.1016/0014-2999(75)90290-3. [DOI] [PubMed] [Google Scholar]
  10. Kudo Y., Oka J. I., Yamada K. Anisatin, a potent GABA antagonist, isolated from Illicium anisatum. Neurosci Lett. 1981 Aug 7;25(1):83–88. doi: 10.1016/0304-3940(81)90105-1. [DOI] [PubMed] [Google Scholar]
  11. Kudo Y., Tanaka A., Yamada K. Dendrobine, an antagonist of beta-alanine, taurine and of presynaptic inhibition in the frog spinal cord. Br J Pharmacol. 1983 Apr;78(4):709–715. doi: 10.1111/j.1476-5381.1983.tb09424.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kudo Y. The pharmacology of the amphibian spinal cord. Prog Neurobiol. 1978;11(1):1–76. doi: 10.1016/0301-0082(78)90007-2. [DOI] [PubMed] [Google Scholar]
  13. McBride W. J., Frederickson R. C. Taurine as a possible inhibitory transmitter in the cerebellum. Fed Proc. 1980 Jul;39(9):2701–2705. [PubMed] [Google Scholar]
  14. Nicoll R. A., Padjen A., Barker J. L. Analysis of amino acid responses on frog motoneurones. Neuropharmacology. 1976 Jan;15(1):45–53. doi: 10.1016/0028-3908(76)90096-4. [DOI] [PubMed] [Google Scholar]
  15. Nistri A., Constanti A. The action of taurine on the lobster muscle fibre an d the frog spinal cord. Neuropharmacology. 1976 Oct;15(10):635–641. doi: 10.1016/0028-3908(76)90020-4. [DOI] [PubMed] [Google Scholar]
  16. Nistri A., Morelli P. Effects of proline and other neutral amino acids on ventral root potentials of the frog spinal cord in vitro. Neuropharmacology. 1978 Jan;17(1):21–27. doi: 10.1016/0028-3908(78)90169-7. [DOI] [PubMed] [Google Scholar]
  17. Nowak L., Bregestovski P., Ascher P., Herbet A., Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2;307(5950):462–465. doi: 10.1038/307462a0. [DOI] [PubMed] [Google Scholar]
  18. Okamoto K., Sakai Y. Augmentation by chlordiazepoxide of the inhibitory effects of taurine, beta-alanine and gamma-aminobutyric acid on spike discharges in guinea-pig cerebellar slices. Br J Pharmacol. 1979 Feb;65(2):277–285. doi: 10.1111/j.1476-5381.1979.tb07829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ono H., Akahane K., Fukuda H., Kudo Y. Supersensitivity of the GABA receptor in the frog spinal cord, as induced by kainic acid. Comp Biochem Physiol C. 1983;76(2):231–236. doi: 10.1016/0742-8413(83)90070-1. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES