Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Aug;94(4):1257–1269. doi: 10.1111/j.1476-5381.1988.tb11646.x

Modulation of the GABAA receptor by depressant barbiturates and pregnane steroids.

J A Peters 1, E F Kirkness 1, H Callachan 1, J J Lambert 1, A J Turner 1
PMCID: PMC1854113  PMID: 2850060

Abstract

1. The modulation of the gamma-aminobutyric acidA (GABAA) receptor by reduced metabolites of progesterone and deoxycorticosterone has been compared with that produced by depressant barbiturates in: (a) voltage-clamp recordings from bovine enzymatically isolated chromaffin cells in cell culture, and (b) an assay of the specific binding of [3H]-muscimol to a preparation of porcine brain membranes. 2. The progesterone metabolites 5 alpha- and 5 beta-pregnan-3 alpha-ol-20-one (greater than or equal to 30 nM) reversibly and dose-dependently enhanced the amplitude of membrane currents elicited by locally applied GABA (100 microM), and over the concentration range 30 nM-100 microM stimulated the binding of [3H]-muscimol. In contrast, 5 alpha- and 5 beta-pregnan-3 beta-ol-20-one (30 nM-100 microM) had little effect in either assay, indicating a marked stereoselectivity of steroid action. 3. Scatchard analysis of the ligand binding data suggested an apparent increase in the number, rather than the affinity, of detectable [3H]-muscimol binding sites as the principle action of the active steroid isomers. 4. GABA-evoked currents were also potentiated by androsterone (1 microM) and the deoxycorticosterone metabolite 5 alpha-pregnane-3 alpha,21-diol-20-one (100 nM). 5. Secobarbitone (10-100 microM), pentobarbitone (10-300 microM) and phenobarbitone (100-500 microM) reversibly and dose-dependently potentiated the amplitude of GABA-evoked currents in the absence of any change in their reversal potential. 6. At relatively high concentrations (greater than or equal to 30 microM) secobarbitone and pentobarbitone directly elicited a membrane current. It is concluded that such currents result from GABAA receptor-channel activation since they share a common reversal potential with GABA-evoked responses (approximately 0 mV), are reversibly antagonized by bicuculline (3 microM), and potentiated by either diazepam (1 microM) or 5 beta-pregnan-3 alpha-ol-20-one (500 nM). 7. Secobarbitone (1 microM-1 mM) dose-dependently enhanced the binding of [3H]-muscimol. In common with the active steroids, an increase in the apparent number of binding sites was responsible for this effect. 8. A saturating concentration (1 mM) of secobarbitone in the ligand binding assay did not suppress the degree of enhancement of control binding produced by 5 beta-pregnan-3 alpha-ol-20-one (30 nM-100 microM). Similarly the steroid, at a concentration of 100 microM, did not influence the enhancement of [3H]-muscimol binding by secobarbitone (1 microM-1 mM).(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
1257

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike N., Maruyama T., Tokutomi N. Kinetic properties of the pentobarbitone-gated chloride current in frog sensory neurones. J Physiol. 1987 Dec;394:85–98. doi: 10.1113/jphysiol.1987.sp016861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Banks P., Peace C. B. Enzyme inhibition by steroid anaesthetic agents derived from progesterone. Br J Anaesth. 1985 May;57(5):512–514. doi: 10.1093/bja/57.5.512. [DOI] [PubMed] [Google Scholar]
  3. Barker J. L., Harrison N. L., Lange G. D., Owen D. G. Potentiation of gamma-aminobutyric-acid-activated chloride conductance by a steroid anaesthetic in cultured rat spinal neurones. J Physiol. 1987 May;386:485–501. doi: 10.1113/jphysiol.1987.sp016547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barker J. L., Ransom B. R. Pentobarbitone pharmacology of mammalian central neurones grown in tissue culture. J Physiol. 1978 Jul;280:355–372. doi: 10.1113/jphysiol.1978.sp012388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bormann J., Clapham D. E. gamma-Aminobutyric acid receptor channels in adrenal chromaffin cells: a patch-clamp study. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2168–2172. doi: 10.1073/pnas.82.7.2168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cottrell G. A., Lambert J. J., Peters J. A. Modulation of GABAA receptor activity by alphaxalone. Br J Pharmacol. 1987 Mar;90(3):491–500. doi: 10.1111/j.1476-5381.1987.tb11198.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fenwick E. M., Marty A., Neher E. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol. 1982 Oct;331:577–597. doi: 10.1113/jphysiol.1982.sp014393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Halsey M. J., Wardley-Smith B., Wood S. Pressure reversal of alphaxalone/alphadolone and methohexitone in tadpoles: evidence for different molecular sites for general anaesthesia. Br J Pharmacol. 1986 Oct;89(2):299–305. doi: 10.1111/j.1476-5381.1986.tb10260.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  10. Harrison N. L., Majewska M. D., Harrington J. W., Barker J. L. Structure-activity relationships for steroid interaction with the gamma-aminobutyric acidA receptor complex. J Pharmacol Exp Ther. 1987 Apr;241(1):346–353. [PubMed] [Google Scholar]
  11. Harrison N. L., Simmonds M. A. Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res. 1984 Dec 10;323(2):287–292. doi: 10.1016/0006-8993(84)90299-3. [DOI] [PubMed] [Google Scholar]
  12. Harrison N. L., Vicini S., Barker J. L. A steroid anesthetic prolongs inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurosci. 1987 Feb;7(2):604–609. doi: 10.1523/JNEUROSCI.07-02-00604.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Higashi H., Nishi S. Effect of barbiturates on the GABA receptor of cat primary afferent neurones. J Physiol. 1982 Nov;332:299–314. doi: 10.1113/jphysiol.1982.sp014414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keane P. E., Biziere K. The effects of general anaesthetics on GABAergic synaptic transmission. Life Sci. 1987 Sep 21;41(12):1437–1448. doi: 10.1016/0024-3205(87)90708-9. [DOI] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lawrence D. K., Gill E. W. Structurally specific effects of some steroid anesthetics on spin-labeled liposomes. Mol Pharmacol. 1975 May;11(3):280–286. [PubMed] [Google Scholar]
  17. Leeb-Lundberg F., Snowman A., Olsen R. W. Barbiturate receptor sites are coupled to benzodiazepine receptors. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7468–7472. doi: 10.1073/pnas.77.12.7468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Majewska M. D., Harrison N. L., Schwartz R. D., Barker J. L., Paul S. M. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science. 1986 May 23;232(4753):1004–1007. doi: 10.1126/science.2422758. [DOI] [PubMed] [Google Scholar]
  19. Majewska M. D., Schwartz R. D. Pregnenolone-sulfate: an endogenous antagonist of the gamma-aminobutyric acid receptor complex in brain? Brain Res. 1987 Feb 24;404(1-2):355–360. doi: 10.1016/0006-8993(87)91394-1. [DOI] [PubMed] [Google Scholar]
  20. Martin I. L. The benzodiazepines and their receptors: 25 years of progress. Neuropharmacology. 1987 Jul;26(7B):957–970. doi: 10.1016/0028-3908(87)90074-8. [DOI] [PubMed] [Google Scholar]
  21. Marty A., Neher E. Potassium channels in cultured bovine adrenal chromaffin cells. J Physiol. 1985 Oct;367:117–141. doi: 10.1113/jphysiol.1985.sp015817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Olsen R. W., Snowman A. M. Chloride-dependent enhancement by barbiturates of gamma-aminobutyric acid receptor binding. J Neurosci. 1982 Dec;2(12):1812–1823. doi: 10.1523/JNEUROSCI.02-12-01812.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Quast U., Brenner O. Modulation of [3H]muscimol binding in rat cerebellar and cerebral cortical membranes by picrotoxin, pentobarbitone, and etomidate. J Neurochem. 1983 Aug;41(2):418–425. doi: 10.1111/j.1471-4159.1983.tb04758.x. [DOI] [PubMed] [Google Scholar]
  24. Ramanjaneyulu R., Ticku M. K. Binding characteristics and interactions of depressant drugs with [35S]t-butylbicyclophosphorothionate, a ligand that binds to the picrotoxinin site. J Neurochem. 1984 Jan;42(1):221–229. doi: 10.1111/j.1471-4159.1984.tb09721.x. [DOI] [PubMed] [Google Scholar]
  25. Richards C. D., White A. E. Additive and non-additive effects of mixtures of short-acting intravenous anaesthetic agents and their significance for theories of anaesthesia. Br J Pharmacol. 1981 Sep;74(1):161–170. doi: 10.1111/j.1476-5381.1981.tb09969.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Segal M., Barker J. L. Rat hippocampal neurons in culture: voltage-clamp analysis of inhibitory synaptic connections. J Neurophysiol. 1984 Sep;52(3):469–487. doi: 10.1152/jn.1984.52.3.469. [DOI] [PubMed] [Google Scholar]
  27. Simmonds M. A. Antagonism of flurazepam and other effects of Ro15-1788, PK8165 and Ro5-4864 on the GABA-A receptor complex in rat cuneate nucleus. Eur J Pharmacol. 1985 Oct 29;117(1):51–60. doi: 10.1016/0014-2999(85)90471-6. [DOI] [PubMed] [Google Scholar]
  28. Simmonds M. A., Turner J. P. Potentiators of responses to activation of gamma-aminobutyric acid (GABAA) receptors. Neuropharmacology. 1987 Jul;26(7B):923–930. doi: 10.1016/0028-3908(87)90071-2. [DOI] [PubMed] [Google Scholar]
  29. Squires R. F., Casida J. E., Richardson M., Saederup E. [35S]t-butylbicyclophosphorothionate binds with high affinity to brain-specific sites coupled to gamma-aminobutyric acid-A and ion recognition sites. Mol Pharmacol. 1983 Mar;23(2):326–336. [PubMed] [Google Scholar]
  30. Study R. E., Barker J. L. Diazepam and (--)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7180–7184. doi: 10.1073/pnas.78.11.7180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Thyagarajan R., Ramanjaneyulu R., Ticku M. K. Enhancement of diazepam and gamma-aminobutyric acid binding by (+)etomidate and pentobarbital. J Neurochem. 1983 Aug;41(2):578–585. doi: 10.1111/j.1471-4159.1983.tb04778.x. [DOI] [PubMed] [Google Scholar]
  32. Ticku M. K., Rastogi S. K., Thyagarajan R. Separate site(s) of action of optical isomers of 1-methyl-5-phenyl-5-propylbarbituric acid with opposite pharmacological activities at the GABA receptor complex. Eur J Pharmacol. 1985 May 28;112(1):1–9. doi: 10.1016/0014-2999(85)90232-8. [DOI] [PubMed] [Google Scholar]
  33. Trifiletti R. R., Snowman A. M., Snyder S. H. Barbiturate recognition site on the GABA/benzodiazepine receptor complex is distinct from the picrotoxinin/TBPS recognition site. Eur J Pharmacol. 1984 Nov 13;106(2):441–447. doi: 10.1016/0014-2999(84)90737-4. [DOI] [PubMed] [Google Scholar]
  34. Whittle S. R., Turner A. J. Differential effects of sedative and anticonvulsant barbiturates on specific [3H]GABA binding to membrane preparations from rat brain cortex. Biochem Pharmacol. 1982 Sep 15;31(18):2891–2895. doi: 10.1016/0006-2952(82)90260-x. [DOI] [PubMed] [Google Scholar]
  35. Williams M., Risley E. A. Characterization of the binding of [3H]muscimol, a potent gamma-aminobutyric acid agonist, to rat brain synaptosomal membranes using a filtration assay. J Neurochem. 1979 Mar;32(3):713–718. doi: 10.1111/j.1471-4159.1979.tb04553.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES