Abstract
1. The properties of the Ca2+ stores in myometrium of 21-day pregnant rats were studied by recording the contractile responses of saponin-treated skinned muscles. 2. After accumulation of Ca2+ into the stores in the presence of 5 mM NaN3, inositol 1,4,5-trisphosphate (InsP3) at concentrations exceeding 3 microM produced a contraction. The amplitude of this contraction was maximal at about 20 microM. A second application of 20 microM InsP3 produced a smaller contraction than the first one. However after reloading the stores with Ca2+, 20 microM InsP3 produced a contraction of the same amplitude as the initial one. 3. After application of 20 microM InsP3, 1 microM A23187 still evoked a large contraction. If A23187 was applied first, the subsequent application of InsP3 or A23187 no longer induced a contraction, even after Ca2+ loading. 4. Guanosine triphosphate (GTP) or arachidonic acid, both 100 microM neither evoked a contraction nor enhanced the subsequent contraction elicited by 20 microM InsP3. 5. Caffeine 25 mM did not induce a contraction nor did it affect the contraction elicited by 20 microM InsP3. 6. The results indicate that in pregnant rat myometrium InsP3 releases Ca2+ from intracellular stores as has been proposed in vascular smooth muscles.
Full text
PDF![284](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae2/1854136/86b906b82355/brjpharm00278-0286.png)
![285](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae2/1854136/fb081dcc7f5a/brjpharm00278-0287.png)
![286](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae2/1854136/11439e3d4c6c/brjpharm00278-0288.png)
![287](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae2/1854136/ad9484d7e43e/brjpharm00278-0289.png)
![288](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae2/1854136/a90561993656/brjpharm00278-0290.png)
![289](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae2/1854136/42dca29dec77/brjpharm00278-0291.png)
![290](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae2/1854136/170992e3aeb7/brjpharm00278-0292.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashoori F., Takai A., Tomita T. The response of non-pregnant rat myometrium to oxytocin in Ca-free solution. Br J Pharmacol. 1985 Jan;84(1):175–183. [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
- Carsten M. E., Miller J. D. Ca2+ release by inositol trisphosphate from Ca2+-transporting microsomes derived from uterine sarcoplasmic reticulum. Biochem Biophys Res Commun. 1985 Aug 15;130(3):1027–1031. doi: 10.1016/0006-291x(85)91718-8. [DOI] [PubMed] [Google Scholar]
- Chan K. M., Turk J. Mechanism of arachidonic acid-induced Ca2+ mobilization from rat liver microsomes. Biochim Biophys Acta. 1987 Apr 22;928(2):186–193. doi: 10.1016/0167-4889(87)90120-0. [DOI] [PubMed] [Google Scholar]
- Cheah A. M. Effect of long chain unsaturated fatty acids on the calcium transport of sarcoplasmic reticulum. Biochim Biophys Acta. 1981 Nov 6;648(2):113–119. doi: 10.1016/0005-2736(81)90025-0. [DOI] [PubMed] [Google Scholar]
- Chueh S. H., Gill D. L. Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms. J Biol Chem. 1986 Oct 25;261(30):13883–13886. [PubMed] [Google Scholar]
- Dawson A. P., Hills G., Comerford J. G. The mechanism of action of GTP on Ca2+ efflux from rat liver microsomal vesicles. Biochem J. 1987 May 15;244(1):87–92. doi: 10.1042/bj2440087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gopalakrishna R., Anderson W. B. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982 Jan 29;104(2):830–836. doi: 10.1016/0006-291x(82)90712-4. [DOI] [PubMed] [Google Scholar]
- Hashimoto T., Hirata M., Itoh T., Kanmura Y., Kuriyama H. Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol. 1986 Jan;370:605–618. doi: 10.1113/jphysiol.1986.sp015953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirata M., Suematsu E., Hashimoto T., Hamachi T., Koga T. Release of Ca2+ from a non-mitochondrial store site in peritoneal macrophages treated with saponin by inositol 1,4,5-trisphosphate. Biochem J. 1984 Oct 1;223(1):229–236. doi: 10.1042/bj2230229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iino M. Tension responses of chemically skinned fibre bundles of the guinea-pig taenia caeci under varied ionic environments. J Physiol. 1981 Nov;320:449–467. doi: 10.1113/jphysiol.1981.sp013961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh T., Kanmura Y., Kuriyama H. A23187 increases calcium permeability of store sites more than of surface membranes in the rabbit mesenteric artery. J Physiol. 1985 Feb;359:467–484. doi: 10.1113/jphysiol.1985.sp015597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh T., Kanmura Y., Kuriyama H. Inorganic phosphate regulates the contraction-relaxation cycle in skinned muscles of the rabbit mesenteric artery. J Physiol. 1986 Jul;376:231–252. doi: 10.1113/jphysiol.1986.sp016151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh T., Kanmura Y., Kuriyama H., Sasaguri T. Nitroglycerine- and isoprenaline-induced vasodilatation: assessment from the actions of cyclic nucleotides. Br J Pharmacol. 1985 Feb;84(2):393–406. doi: 10.1111/j.1476-5381.1985.tb12923.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh T., Kuriyama H., Suzuki H. Differences and similarities in the noradrenaline- and caffeine-induced mechanical responses in the rabbit mesenteric artery. J Physiol. 1983 Apr;337:609–629. doi: 10.1113/jphysiol.1983.sp014645. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh T., Kuriyama H., Suzuki H. Excitation--contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1981 Dec;321:513–535. doi: 10.1113/jphysiol.1981.sp014000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Izumi H. Changes in the mechanical properties of the longitudinal and circular muscle tissues of the rat myometrium during gestation. Br J Pharmacol. 1985 Sep;86(1):247–257. doi: 10.1111/j.1476-5381.1985.tb09456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marc S., Leiber D., Harbon S. Carbachol and oxytocin stimulate the generation of inositol phosphates in the guinea pig myometrium. FEBS Lett. 1986 May 26;201(1):9–14. doi: 10.1016/0014-5793(86)80561-0. [DOI] [PubMed] [Google Scholar]
- Mironneau C., Mironneau J., Savineau J. P. Maintained contractions of rat uterine smooth muscle incubated in a Ca2+-free solution. Br J Pharmacol. 1984 Jul;82(3):735–743. doi: 10.1111/j.1476-5381.1984.tb10813.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
- Osa T. The inhibitory action of caffeine on the smooth muscles of mouse myometrium and guinea pig ileum. Jpn J Physiol. 1973 Apr;23(2):199–216. doi: 10.2170/jjphysiol.23.199. [DOI] [PubMed] [Google Scholar]
- Saida K., van Breemen C. GTP requirement for inositol-1,4,5-trisphosphate-induced Ca2+ release from sarcoplasmic reticulum in smooth muscle. Biochem Biophys Res Commun. 1987 May 14;144(3):1313–1316. doi: 10.1016/0006-291x(87)91453-7. [DOI] [PubMed] [Google Scholar]
- Schrey M. P., Read A. M., Steer P. J. Oxytocin and vasopressin stimulate inositol phosphate production in human gestational myometrium and decidua cells. Biosci Rep. 1986 Jul;6(7):613–619. doi: 10.1007/BF01114755. [DOI] [PubMed] [Google Scholar]
- Somlyo A. V., Bond M., Somlyo A. P., Scarpa A. Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5231–5235. doi: 10.1073/pnas.82.15.5231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. V., Somlyo A. P. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther. 1968 Jan;159(1):129–145. [PubMed] [Google Scholar]
- Spät A., Fabiato A., Rubin R. P. Binding of inositol trisphosphate by a liver microsomal fraction. Biochem J. 1986 Feb 1;233(3):929–932. doi: 10.1042/bj2330929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suematsu E., Hirata M., Hashimoto T., Kuriyama H. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun. 1984 Apr 30;120(2):481–485. doi: 10.1016/0006-291x(84)91279-8. [DOI] [PubMed] [Google Scholar]
- Walker J. W., Somlyo A. V., Goldman Y. E., Somlyo A. P., Trentham D. R. Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate. Nature. 1987 May 21;327(6119):249–252. doi: 10.1038/327249a0. [DOI] [PubMed] [Google Scholar]
- Wolf B. A., Turk J., Sherman W. R., McDaniel M. L. Intracellular Ca2+ mobilization by arachidonic acid. Comparison with myo-inositol 1,4,5-trisphosphate in isolated pancreatic islets. J Biol Chem. 1986 Mar 15;261(8):3501–3511. [PubMed] [Google Scholar]