Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Oct;95(2):413–418. doi: 10.1111/j.1476-5381.1988.tb11661.x

Opioid modulation of non-cholinergic neural bronchoconstriction in guinea-pig in vivo.

M G Belvisi 1, K F Chung 1, D M Jackson 1, P J Barnes 1
PMCID: PMC1854171  PMID: 2465805

Abstract

1. Opioid receptors have been demonstrated on sensory fibres in the vagus nerve. Non-cholinergic (NC) neural bronchoconstriction in guinea-pig is due to release of neuropeptides from sensory nerve endings. We have therefore studied the effect of opioids on this NC bronchoconstriction in the anaesthetized guinea-pig. 2. Bilateral vagal stimulation (5 V, 5 ms, 10 Hz) caused reproducible bronchoconstriction in guinea-pigs which was reduced by atropine (1 mg kg-1), but the NC component was unaffected by hexamethonium (10 mg kg-1). 3. NC bronchoconstriction was reduced by morphine in a dose-dependent manner (ED50 = 132 micrograms kg-1 with a maximal inhibition of 79 +/- 2.1% at 1 mg kg-1). Yohimbine (0.5 mg kg-1) did not alter the inhibitory effect of morphine (1 mg kg-1). 4. The inhibitory effect of morphine was completely reversed by naloxone (1 mg kg-1) which had no effect on NC bronchoconstriction. Propranolol (1 mg kg-1) significantly increased the NC bronchoconstrictor response but did not significantly alter the inhibition by morphine. 5. The selective mu-opioid receptor agonist Tyr-(D-Ala)-Gly-(N-Me-Phe)-Glyol (DAGOL) was significantly more potent than morphine with an ED50 of 5.4 micrograms kg-1 and complete inhibition at 100 micrograms kg-1. The delta-agonist Tyr-(D-Pen)-Gly-Phe-(D-Pen) (DPDPE) was less potent than DAGOL with an ED50 of 28 micrograms kg-1 and a maximal inhibition of only 50 +/- 5% at 100 micrograms kg-1.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
413

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson R. G., Grundström N. The excitatory non-cholinergic, non-adrenergic nervous system of the guinea-pig airways. Eur J Respir Dis Suppl. 1983;131:141–157. [PubMed] [Google Scholar]
  2. Atweh S. F., Murrin L. C., Kuhar M. J. Presynaptic localization of opiate receptors in the vagal and accessory optic systems: an autoradiographic study. Neuropharmacology. 1978 Jan;17(1):65–71. doi: 10.1016/0028-3908(78)90175-2. [DOI] [PubMed] [Google Scholar]
  3. Barnes P. J. Asthma as an axon reflex. Lancet. 1986 Feb 1;1(8475):242–245. doi: 10.1016/s0140-6736(86)90777-4. [DOI] [PubMed] [Google Scholar]
  4. Barthó L., Szolcsányi J. Opiate agonists inhibit neurogenic plasma extravasation in the rat. Eur J Pharmacol. 1981 Jul 17;73(1):101–104. doi: 10.1016/0014-2999(81)90152-7. [DOI] [PubMed] [Google Scholar]
  5. Dray A., Nunan L. Selective delta-opioid receptor antagonism by ICI 174,864 in the central nervous system. Peptides. 1984 Sep-Oct;5(5):1015–1016. doi: 10.1016/0196-9781(84)90130-x. [DOI] [PubMed] [Google Scholar]
  6. Frossard N., Barnes P. J. Mu-opioid receptors modulate non-cholinergic constrictor nerves in guinea-pig airways. Eur J Pharmacol. 1987 Sep 23;141(3):519–522. doi: 10.1016/0014-2999(87)90578-4. [DOI] [PubMed] [Google Scholar]
  7. Grundström N., Andersson R. G. In vivo demonstration of alpha-2-adrenoceptor-mediated inhibition of the excitatory non-cholinergic neurotransmission in guinea pig airways. Naunyn Schmiedebergs Arch Pharmacol. 1985 Jan;328(3):236–240. doi: 10.1007/BF00515547. [DOI] [PubMed] [Google Scholar]
  8. Handa B. K., Land A. C., Lord J. A., Morgan B. A., Rance M. J., Smith C. F. Analogues of beta-LPH61-64 possessing selective agonist activity at mu-opiate receptors. Eur J Pharmacol. 1981 Apr 9;70(4):531–540. doi: 10.1016/0014-2999(81)90364-2. [DOI] [PubMed] [Google Scholar]
  9. Hirning L. D., Mosberg H. I., Hurst R., Hruby V. J., Burks T. F., Porreca F. Studies in vitro with ICI 174,864, [D-Pen2, D-Pen5]-enkephalin (DPDPE) and [D-Ala2, NMePhe4, Gly-ol]-enkephalin (DAGO). Neuropeptides. 1985 Feb;5(4-6):383–386. doi: 10.1016/0143-4179(85)90034-4. [DOI] [PubMed] [Google Scholar]
  10. Jessell T. M., Iversen L. L. Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature. 1977 Aug 11;268(5620):549–551. doi: 10.1038/268549a0. [DOI] [PubMed] [Google Scholar]
  11. Konishi S., Tsunoo A., Otsuka M. Enkephalin as a transmitter for presynaptic inhibition in sympathetic ganglia. Nature. 1981 Nov 5;294(5836):80–82. doi: 10.1038/294080a0. [DOI] [PubMed] [Google Scholar]
  12. Laduron P. M. Axonal transport of opiate receptors in capsaicin-sensitive neurones. Brain Res. 1984 Feb 27;294(1):157–160. doi: 10.1016/0006-8993(84)91322-2. [DOI] [PubMed] [Google Scholar]
  13. Lembeck F., Donnerer J., Barthó L. Inhibition of neurogenic vasodilation and plasma extravasation by substance P antagonists, somatostatin and [D-Met2, Pro5]enkephalinamide. Eur J Pharmacol. 1982 Nov 19;85(2):171–176. doi: 10.1016/0014-2999(82)90462-9. [DOI] [PubMed] [Google Scholar]
  14. Lembeck F., Donnerer J. Opioid control of the function of primary afferent substance P fibres. Eur J Pharmacol. 1985 Aug 27;114(3):241–246. doi: 10.1016/0014-2999(85)90365-6. [DOI] [PubMed] [Google Scholar]
  15. Lundberg J. M., Brodin E., Saria A. Effects and distribution of vagal capsaicin-sensitive substance P neurons with special reference to the trachea and lungs. Acta Physiol Scand. 1983 Nov;119(3):243–252. doi: 10.1111/j.1748-1716.1983.tb07334.x. [DOI] [PubMed] [Google Scholar]
  16. Lundberg J. M., Saria A., Brodin E., Rosell S., Folkers K. A substance P antagonist inhibits vagally induced increase in vascular permeability and bronchial smooth muscle contraction in the guinea pig. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1120–1124. doi: 10.1073/pnas.80.4.1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martling C. R., Saria A., Andersson P., Lundberg J. M. Capsaicin pretreatment inhibits vagal cholinergic and non-cholinergic control of pulmonary mechanics in the guinea pig. Naunyn Schmiedebergs Arch Pharmacol. 1984 Apr;325(4):343–348. doi: 10.1007/BF00504379. [DOI] [PubMed] [Google Scholar]
  18. Mosberg H. I., Hurst R., Hruby V. J., Gee K., Yamamura H. I., Galligan J. J., Burks T. F. Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5871–5874. doi: 10.1073/pnas.80.19.5871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nagy J. I., Vincent S. R., Staines W. A., Fibiger H. C., Reisine T. D., Yamamura H. I. Neurotoxic action of capsaicin on spinal substance P neurons. Brain Res. 1980 Mar 31;186(2):435–444. doi: 10.1016/0006-8993(80)90987-7. [DOI] [PubMed] [Google Scholar]
  20. Pasternak G. W. Multiple mu opiate receptors: biochemical and pharmacological evidence for multiplicity. Biochem Pharmacol. 1986 Feb 1;35(3):361–364. doi: 10.1016/0006-2952(86)90205-4. [DOI] [PubMed] [Google Scholar]
  21. Pfeiffer A., Pasi A., Mehraein P., Herz A. Opiate receptor binding sites in human brain. Brain Res. 1982 Sep 23;248(1):87–96. doi: 10.1016/0006-8993(82)91150-7. [DOI] [PubMed] [Google Scholar]
  22. Piercey M. F., Lahti R. A., Schroeder L. A., Einspahr F. J., Barsuhn C. U-50488H, a pure kappa receptor agonist with spinal analgesic loci in the mouse. Life Sci. 1982 Sep 20;31(12-13):1197–1200. doi: 10.1016/0024-3205(82)90341-1. [DOI] [PubMed] [Google Scholar]
  23. Smith T. W., Buchan P. Peripheral opioid receptors located on the rat saphenous nerve. Neuropeptides. 1984 Dec;5(1-3):217–220. doi: 10.1016/0143-4179(84)90066-0. [DOI] [PubMed] [Google Scholar]
  24. Young W. S., 3rd, Wamsley J. K., Zarbin M. A., Kuhar M. J. Opioid receptors undergo axonal flow. Science. 1980 Oct 3;210(4465):76–78. doi: 10.1126/science.6158097. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES