Abstract
1. gamma-Aminobutyric acid (GABA) was applied by the 'concentration clamp' technique to isolated neurones of Aplysia. GABA induced a chloride current (ICl) due to activation of a single class of chloride-channel. 2. The concentration-response curve for the peak ICl gave an apparent dissociation constant of 6.4 X 10(-5) M and a Hill coefficient of 0.88. The current-voltage relationship was linear in the voltage range examined (-40 to +10 mV). 3. The activation phase of the ICl could be fitted to a single exponential function and desensitization followed the sum of two exponential functions. The time constants of activation and desensitization decreased with increasing concentrations of GABA but were voltage-independent. The recovery process from desensitization also followed the sum of two exponential functions. 4. As for the rate-limiting step of the channel activation, the hyperbolic relationship between the activation rate and GABA concentration showed that the rapid binding assumption holds, suggesting that the isomerization step is rate-limiting. The apparent channel closing rate constant was estimated to be 10 s-1 from the ordinate intercept of the linear part of the above relationship at lower concentrations. 5. Muscimol and beta-alanine induced a ICl, which cross-desensitized with that evoked by GABA. The GABA-ICl was not enhanced by diazepam (10(-6) M) or alpha-chloralose (10(-3) M), in fact depressant effects were evident. 6. Pentobarbitone decreased the GABA-ICl non-competitively without altering activation or desensitization kinetics. The concentration-inhibition curve gave a KD value of 8.9 x 10(-5) M and a Hill coefficient of 1.0. 7. These results suggest that GABA activates a single class of Cl channel in Aplysia neurones, which have one binding site for the agonist. The GABA receptor-Cl channel complex in Aplysia is pharmacologically and perhaps structurally different from that in vertebrates.
Full text
PDF![883](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/37061e045cea/brjpharm00280-0215.png)
![884](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/055ecf8695f4/brjpharm00280-0216.png)
![885](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/fe70e6f6f49c/brjpharm00280-0217.png)
![886](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/9eb05d0dd777/brjpharm00280-0218.png)
![887](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/3dd15fab6257/brjpharm00280-0219.png)
![888](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/509836a05a31/brjpharm00280-0220.png)
![889](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/82bf51510ae4/brjpharm00280-0221.png)
![890](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/e39117a2c547/brjpharm00280-0222.png)
![891](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/3eb4f42dfbfc/brjpharm00280-0223.png)
![892](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/7a68d3c0b39f/brjpharm00280-0224.png)
![893](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/0e3d3a9b2b19/brjpharm00280-0225.png)
![894](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/fcba1baf01fa/brjpharm00280-0226.png)
![895](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4691/1854231/1c259467cdbe/brjpharm00280-0227.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aickin C. C., Deisz R. A. Pentobarbitone interference with inhibitory synaptic transmission in crayfish stretch receptor neurones. J Physiol. 1981 Jun;315:175–187. doi: 10.1113/jphysiol.1981.sp013740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akaike N., Hattori K., Inomata N., Oomura Y. gamma-Aminobutyric-acid- and pentobarbitone-gated chloride currents in internally perfused frog sensory neurones. J Physiol. 1985 Mar;360:367–386. doi: 10.1113/jphysiol.1985.sp015622. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akaike N., Inoue M., Krishtal O. A. 'Concentration-clamp' study of gamma-aminobutyric-acid-induced chloride current kinetics in frog sensory neurones. J Physiol. 1986 Oct;379:171–185. doi: 10.1113/jphysiol.1986.sp016246. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andreev A. A., Veprintsev B. N., Vulfius C. A. Two-component desensitization of nicotinic receptors induced by acetylcholine agonists in Lymnaea stagnalis neurones. J Physiol. 1984 Aug;353:375–391. doi: 10.1113/jphysiol.1984.sp015341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ascher P., Marty A., Neild T. O. Life time and elementary conductance of the channels mediating the excitatory effects of acetylcholine in Aplysia neurones. J Physiol. 1978 May;278:177–206. doi: 10.1113/jphysiol.1978.sp012299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J. L., Ransom B. R. Amino acid pharmacology of mammalian central neurones grown in tissue culture. J Physiol. 1978 Jul;280:331–354. doi: 10.1113/jphysiol.1978.sp012387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker J. L., Ransom B. R. Pentobarbitone pharmacology of mammalian central neurones grown in tissue culture. J Physiol. 1978 Jul;280:355–372. doi: 10.1113/jphysiol.1978.sp012388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brookes N. Werman R:The cooperativity of -aminobutyric action on the membrane of locust muscle fibers. Mol Pharmacol. 1973 Jul;9(4):571–579. [PubMed] [Google Scholar]
- Cash D. J., Subbarao K. gamma-Aminobutyric acid (GABA) mediated transmembrane chloride flux with membrane vesicles from rat brain measured by quench flow technique: kinetic homogeneity of ion flux and receptor desensitization. Life Sci. 1987 Jul 27;41(4):437–445. doi: 10.1016/0024-3205(87)90219-0. [DOI] [PubMed] [Google Scholar]
- Chesnut T. J. Two-component desensitization at the neuromuscular junction of the frog. J Physiol. 1983 Mar;336:229–241. doi: 10.1113/jphysiol.1983.sp014578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Colquhoun D., Hawkes A. G. Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Proc R Soc Lond B Biol Sci. 1977 Nov 14;199(1135):231–262. doi: 10.1098/rspb.1977.0137. [DOI] [PubMed] [Google Scholar]
- Connors B. W. A comparison of the effects of pentobarbital and diphenylhydantoin on the GABA sensitivity and excitability of adult sensory ganglion cells. Brain Res. 1981 Mar 2;207(2):357–369. doi: 10.1016/0006-8993(81)90370-x. [DOI] [PubMed] [Google Scholar]
- Cote I. L., Wilson W. A. Effects of barbiturates on inhibitory and excitatory responses to applied neurotransmitters in Aplysia. J Pharmacol Exp Ther. 1980 Jul;214(1):161–165. [PubMed] [Google Scholar]
- DEL CASTILLO J., KATZ B. Interaction at end-plate receptors between different choline derivatives. Proc R Soc Lond B Biol Sci. 1957 May 7;146(924):369–381. doi: 10.1098/rspb.1957.0018. [DOI] [PubMed] [Google Scholar]
- Evans R. H. Potentiation of the effects of GABA by pentobarbitone. Brain Res. 1979 Jul 27;171(1):113–120. doi: 10.1016/0006-8993(79)90736-4. [DOI] [PubMed] [Google Scholar]
- Feltz A. Competitive interaction of beta-guanidino propionic acid and gamma-aminobutyric acid on the muscle fibre of the crayfish. J Physiol. 1971 Jul;216(2):391–401. doi: 10.1113/jphysiol.1971.sp009531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hattori K., Akaike N., Oomura Y., Kuraoka S. Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons. Am J Physiol. 1984 Mar;246(3 Pt 1):C259–C265. doi: 10.1152/ajpcell.1984.246.3.C259. [DOI] [PubMed] [Google Scholar]
- Hattori K., Oomura Y., Akaike N. Diazepam action on gamma-aminobutyric acid-activated chloride currents in internally perfused frog sensory neurons. Cell Mol Neurobiol. 1986 Sep;6(3):307–323. doi: 10.1007/BF00711116. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higashi H., Nishi S. Effect of barbiturates on the GABA receptor of cat primary afferent neurones. J Physiol. 1982 Nov;332:299–314. doi: 10.1113/jphysiol.1982.sp014414. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikemoto Y., Akaike N., Ono K. 4-aminopyridine activates a cholinergic chloride conductance in isolated Helix neurons. Neurosci Lett. 1987 Apr 23;76(1):42–46. doi: 10.1016/0304-3940(87)90189-3. [DOI] [PubMed] [Google Scholar]
- Ishizuka S., Hattori K., Akaike N. Separation of ionic currents in the somatic membrane of frog sensory neurons. J Membr Biol. 1984;78(1):19–28. doi: 10.1007/BF01872528. [DOI] [PubMed] [Google Scholar]
- Kaneko A., Tachibana M. Effects of gamma-aminobutyric acid on isolated cone photoreceptors of the turtle retina. J Physiol. 1986 Apr;373:443–461. doi: 10.1113/jphysiol.1986.sp016057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kijima H., Kijima S. 'Steady/equilibrium approximation' in relaxation and fluctuation. I. Procedure to simplify first-order reaction. Biophys Chem. 1982 Nov;16(3):181–192. doi: 10.1016/0301-4622(82)87001-4. [DOI] [PubMed] [Google Scholar]
- Kijima H., Kijima S. 'Steady/equilibrium approximation' in relaxation and fluctuation. II. Mathematical theory of approximations in first-order reaction. Biophys Chem. 1983 Jun;17(4):261–283. doi: 10.1016/0301-4622(83)80012-x. [DOI] [PubMed] [Google Scholar]
- Macdonald R., Barker J. L. Benzodiazepines specifically modulate GABA-mediated postsynaptic inhibition in cultured mammalian neurones. Nature. 1978 Feb 9;271(5645):563–564. doi: 10.1038/271563a0. [DOI] [PubMed] [Google Scholar]
- Magleby K. L., Stevens C. F. The effect of voltage on the time course of end-plate currents. J Physiol. 1972 May;223(1):151–171. doi: 10.1113/jphysiol.1972.sp009839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto M., Sasaki K., Shozushima M., Sato M. Desensitization of Cl(-)-dependent GABA response observed in ganglion cells of Aplysia. Jpn J Physiol. 1986;36(2):349–358. doi: 10.2170/jjphysiol.36.349. [DOI] [PubMed] [Google Scholar]
- Matsumoto M. The voltage-dependent nature of the GABA-induced conductance change recorded from the ganglion cell of Aplysia. Jpn J Physiol. 1982;32(1):55–67. doi: 10.2170/jjphysiol.32.55. [DOI] [PubMed] [Google Scholar]
- Nicoll R. A., Wojtowicz J. M. The effects of pentobarbital and related compounds on frog motoneurons. Brain Res. 1980 Jun 2;191(1):225–237. doi: 10.1016/0006-8993(80)90325-x. [DOI] [PubMed] [Google Scholar]
- Numann R. E., Wong R. K. Voltage-clamp study on GABA response desensitization in single pyramidal cells dissociated from the hippocampus of adult guinea pigs. Neurosci Lett. 1984 Jun 29;47(3):289–294. doi: 10.1016/0304-3940(84)90528-7. [DOI] [PubMed] [Google Scholar]
- Olsen R. W. GABA-benzodiazepine-barbiturate receptor interactions. J Neurochem. 1981 Jul;37(1):1–13. doi: 10.1111/j.1471-4159.1981.tb05284.x. [DOI] [PubMed] [Google Scholar]
- Parker I., Gundersen C. B., Miledi R. Actions of pentobarbital on rat brain receptors expressed in Xenopus oocytes. J Neurosci. 1986 Aug;6(8):2290–2297. doi: 10.1523/JNEUROSCI.06-08-02290.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peper K., Dreyer F., Müller K. D. Analysis of cooperativity of drug-receptor interaction by quantitative iontophoresis at frog motor end plates. Cold Spring Harb Symp Quant Biol. 1976;40:187–192. doi: 10.1101/sqb.1976.040.01.020. [DOI] [PubMed] [Google Scholar]
- Randle J. C., Renaud L. P. Actions of gamma-aminobutyric acid on rat supraoptic nucleus neurosecretory neurones in vitro. J Physiol. 1987 Jun;387:629–647. doi: 10.1113/jphysiol.1987.sp016592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ransom B. R., Barker J. L. Pentobarbital selectively enhances GABA-mediated post-synaptic inhibition in tissue cultured mouse spinal neurons. Brain Res. 1976 Sep 24;114(3):530–535. doi: 10.1016/0006-8993(76)90977-x. [DOI] [PubMed] [Google Scholar]
- Shimizu N., Akaike N., Oomura Y., Maruhashi J., Klee M. R. GABA and lioresal actions on the identified Onchidium neuron. Jpn J Physiol. 1983;33(3):459–467. doi: 10.2170/jjphysiol.33.459. [DOI] [PubMed] [Google Scholar]
- Slater N. T., Hall A. F., Carpenter D. O. Kinetic properties of cholinergic desensitization in Aplysia neurons. Proc R Soc Lond B Biol Sci. 1984 Nov 22;223(1230):63–78. doi: 10.1098/rspb.1984.0083. [DOI] [PubMed] [Google Scholar]
- Study R. E., Barker J. L. Diazepam and (--)-pentobarbital: fluctuation analysis reveals different mechanisms for potentiation of gamma-aminobutyric acid responses in cultured central neurons. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7180–7184. doi: 10.1073/pnas.78.11.7180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi A., Takeuchi N. A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J Physiol. 1969 Nov;205(2):377–391. doi: 10.1113/jphysiol.1969.sp008972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takeuchi A., Takeuchi N. A study of the inhibitory action of gamma-amino-butyric acid on neuromuscular transmission in the crayfish. J Physiol. 1966 Mar;183(2):418–432. doi: 10.1113/jphysiol.1966.sp007874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willow M., Johnston G. A. Pharmacology of barbiturates: electrophysiological and neurochemical studies. Int Rev Neurobiol. 1983;24:15–49. doi: 10.1016/s0074-7742(08)60219-6. [DOI] [PubMed] [Google Scholar]
- Wong E. H., Leeb-Lundberg L. M., Teichberg V. I., Olsen R. W. gamma-Aminobutyric acid activation of 36Cl- flux in rat hippocampal slices and its potentiation by barbiturates. Brain Res. 1984 Jun 15;303(2):267–275. doi: 10.1016/0006-8993(84)91213-7. [DOI] [PubMed] [Google Scholar]
- Yarowsky P. J., Carpenter D. O. Receptors for gamma-aminobutyric acid (GABA) on Aplysia neurons. Brain Res. 1978 Apr 7;144(1):75–94. doi: 10.1016/0006-8993(78)90436-5. [DOI] [PubMed] [Google Scholar]
- Yasui S., Ishizuka S., Akaike N. GABA activates different types of chloride-conducting receptor-ionophore complexes in a dose-dependent manner. Brain Res. 1985 Sep 30;344(1):176–180. doi: 10.1016/0006-8993(85)91206-5. [DOI] [PubMed] [Google Scholar]