Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1988 Nov;95(3):811–820. doi: 10.1111/j.1476-5381.1988.tb11709.x

Control of interval-force relation in canine ventricular myocardium studied with ryanodine.

D Bose 1, L V Hryshko 1, B W King 1, T Chau 1
PMCID: PMC1854232  PMID: 2463029

Abstract

1. The mechanism of post-extrasystolic, rest and frequency potentiation was studied in canine isolated ventricular muscle. 2. Ryanodine, which impairs Ca availability from the sarcoplasmic reticulum (SR), reduced the amplitude of the extrasystole less than that of the steady state contraction. Ryanodine also inhibited post-extrasystolic potentiation and converted rest-potentiation into rest depression. Rest-potentiation was blocked preferentially by ryanodine compared to post-extrasystolic potentiation. An increase in the contribution of extracellular Ca to the extrasystolic contraction could not entirely account for the post-extrasystolic potentiation. 3. Prolonged rest, by itself, also caused depression of the first post-rest contraction. During rest-potentiation, SR Ca seemed to play a greater role in contraction than transmembrane Ca influx. However, the ability of the 'release pool' of Ca in the SR to be reprimed after a contraction was reduced. This was seen as a decrease in post-extrasystolic potentiation elicited immediately after rest. 4. A decrease in stimulus interval was associated with a transient decrease in contraction amplitude followed by an increase. An abrupt increase in stimulus interval had the opposite effect. Ryanodine blocked the initial transient changes and accelerated the delayed changes. These results suggest that the transient changes in contraction after sudden changes in drive interval are dependent on the SR. 5. Transmembrane Ca entry and the rate of recovery of the Ca release process (repriming) in the SR after a contraction seem to be interval-dependent. The data also indicate that different mechanisms are involved in post-extrasystolic and rest-potentiation. 6. The results are consistent with a model which proposes 'recirculation' of activator Ca within the SR after a contraction or of the presence of an appreciable amount of inactivation of the SR Ca release process during normal stimulation. An increased pool of releasable Ca due to longer recirculation time or a time-dependent decay in the level of inactivation of Ca release from the SR may give rise to rest-potentiation.

Full text

PDF
811

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler D., Wong A. Y., Mahler Y., Klassen G. A. Model of calcium movements in the mammalian myocardium: interval-strength relationship. J Theor Biol. 1985 Mar 21;113(2):379–394. doi: 10.1016/s0022-5193(85)80233-2. [DOI] [PubMed] [Google Scholar]
  2. Allen D. G., Jewell B. R., Wood E. H. Studies of the contractility of mammalian myocardium at low rates of stimulation. J Physiol. 1976 Jan;254(1):1–17. doi: 10.1113/jphysiol.1976.sp011217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bers D. M. Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery. Am J Physiol. 1985 Mar;248(3 Pt 2):H366–H381. doi: 10.1152/ajpheart.1985.248.3.H366. [DOI] [PubMed] [Google Scholar]
  4. Boyechko G., Bose D. A versatile computer-controlled biological stimulus sequencer. J Pharmacol Methods. 1984 Aug;12(1):45–52. doi: 10.1016/0160-5402(84)90005-6. [DOI] [PubMed] [Google Scholar]
  5. Bravený P., Sumbera J. Electromechanical correlations in the mammalian heart muscle. Pflugers Arch. 1970;319(1):36–48. doi: 10.1007/BF00586426. [DOI] [PubMed] [Google Scholar]
  6. Chapman R. A., Léoty C. The time-dependent and dose-dependent effects of caffeine on the contraction of the ferret heart. J Physiol. 1976 Apr;256(2):287–314. doi: 10.1113/jphysiol.1976.sp011326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coraboeuf E. Editorial: Membrane electrical activity and double component contraction in cardiac tissue. J Mol Cell Cardiol. 1974 Jun;6(3):215–225. doi: 10.1016/0022-2828(74)90051-0. [DOI] [PubMed] [Google Scholar]
  8. Edman K. A., Jóhannsson M. The contractile state of rabbit papillary muscle in relation to stimulation frequency. J Physiol. 1976 Jan;254(3):565–581. doi: 10.1113/jphysiol.1976.sp011247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Endoh M., Iijima T. Twitch potentiation by rest in canine ventricular muscle: effects of theophylline. Am J Physiol. 1981 Oct;241(4):H583–H590. doi: 10.1152/ajpheart.1981.241.4.H583. [DOI] [PubMed] [Google Scholar]
  10. Fabiato A. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):291–320. doi: 10.1085/jgp.85.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):247–289. doi: 10.1085/jgp.85.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forester G. V., Mainwood G. W. Interval dependent inotropic effects in the rat myocardium and the effect of calcium. Pflugers Arch. 1974;352(3):189–196. doi: 10.1007/BF00590484. [DOI] [PubMed] [Google Scholar]
  13. Glitsch H. G., Reuter H., Scholz H. The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles. J Physiol. 1970 Jul;209(1):25–43. doi: 10.1113/jphysiol.1970.sp009153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horackova M., Vassort G. Proceedings: Regulation of tonic tension in frog atrial muscle by voltage-dependent Na-Ca exchange. J Physiol. 1976 Jun;258(2):77P–78P. [PubMed] [Google Scholar]
  15. Hunter D. R., Haworth R. A., Berkoff H. A. Modulation of cellular calcium stores in the perfused rat heart by isoproterenol and ryanodine. Circ Res. 1983 Nov;53(5):703–712. doi: 10.1161/01.res.53.5.703. [DOI] [PubMed] [Google Scholar]
  16. KOCH-WESER J., BLINKS J. R. THE INFLUENCE OF THE INTERVAL BETWEEN BEATS ON MYOCARDIAL CONTRACTILITY. Pharmacol Rev. 1963 Sep;15:601–652. [PubMed] [Google Scholar]
  17. Kaufmann R., Bayer R., Fürniss T., Krause H., Tritthart H. Calcium-movement controlling cardiac contractility II. Analog computation of cardiac excitation-contraction coupling on the basis of calcium kinetics in a multi-compartment model. J Mol Cell Cardiol. 1974 Dec;6(6):543–559. doi: 10.1016/0022-2828(74)90035-2. [DOI] [PubMed] [Google Scholar]
  18. Lukas A., Bose R. Mechanisms of frequency-induced potentiation of contractions in isolated rat atria. Naunyn Schmiedebergs Arch Pharmacol. 1986 Dec;334(4):480–487. doi: 10.1007/BF00569390. [DOI] [PubMed] [Google Scholar]
  19. Manring A., Hollander P. B. The interval-strength relationship in mammalian atrium: a calcium exchange model. I. Theory. Biophys J. 1971 Jun;11(6):483–501. doi: 10.1016/S0006-3495(71)86230-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. New W., Trautwein W. The ionic nature of slow inward current and its relation to contraction. Pflugers Arch. 1972;334(1):24–38. doi: 10.1007/BF00585998. [DOI] [PubMed] [Google Scholar]
  21. Noble S., Shimoni Y. The calcium and frequency dependence of the slow inward current 'staircase' in frog atrium. J Physiol. 1981 Jan;310:57–75. doi: 10.1113/jphysiol.1981.sp013537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Penefsky Z. J. Ultrastructural studies of the site of action of ryanodine on heart muscle. Pflugers Arch. 1974 Mar 11;347(3):185–198. doi: 10.1007/BF00592596. [DOI] [PubMed] [Google Scholar]
  23. Reiter M., Seibel K., Karema E. The inotropic action of noradrenaline on rested-state contractions of guinea-pig cardiac ventricular muscle. Life Sci. 1978 Apr 3;22(13-15):1149–1158. doi: 10.1016/0024-3205(78)90084-x. [DOI] [PubMed] [Google Scholar]
  24. Schouten V. J., van Deen J. K., de Tombe P., Verveen A. A. Force-interval relationship in heart muscle of mammals. A calcium compartment model. Biophys J. 1987 Jan;51(1):13–26. doi: 10.1016/S0006-3495(87)83307-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Somlyo A. V., Gonzalez-Serratos H. G., Shuman H., McClellan G., Somlyo A. P. Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study. J Cell Biol. 1981 Sep;90(3):577–594. doi: 10.1083/jcb.90.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sutko J. L., Willerson J. T., Templeton G. H., Jones L. R., Besch H. R., Jr Ryanodine: its alterations of cat papillary muscle contractile state and responsiveness to inotropic interventions and a suggested mechanism of action. J Pharmacol Exp Ther. 1979 Apr;209(1):37–47. [PubMed] [Google Scholar]
  27. Wohlfart B., Noble M. I. The cardiac excitation-contraction cycle. Pharmacol Ther. 1982;16(1):1–43. doi: 10.1016/0163-7258(82)90030-4. [DOI] [PubMed] [Google Scholar]
  28. Wood E. H., Heppner R. L., Weidmann S. Inotropic effects of electric currents. I. Positive and negative effects of constant electric currents or current pulses applied during cardiac action potentials. II. Hypotheses: calcium movements, excitation-contraction coupling and inotropic effects. Circ Res. 1969 Mar;24(3):409–445. doi: 10.1161/01.res.24.3.409. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES