Abstract
1. The protective effects of ten slow channel inhibitor drugs against severe progressive hypoxia were investigated in rats breathing spontaneously during light anaesthesia. Respiration, heart rate, electrocorticogram (ECoG) and/or electroencephalogram (EEG) were recorded. 2. Tolerance times were monitored from hypoxia onset until cessation of respiration, ECoG, EEG synchronization, and 'background-EEG'. Drugs were administered i.v. 5 min before the onset of hypoxia. 3. Verapamil, gallopamil, and nimodipine resulted in a significant increase of tolerance times; fendiline and bepridil showed a small increase (not significant); bencyclan and prenylamine were ineffective; cinnarizine and diltiazem slightly reduced tolerance times as did flunarizine at low doses. 4. At protective doses, verapamil, gallopamil, and nimodipine significantly raised the respiration rate but had little or no cardiac depressor effects. Bencyclan showed ventilatory drive but cardiocirculatory depression. A clear-cut ventilatory drive did not occur with the other ineffective slow channel inhibitors. 5. It is suggested that the protective actions observed were not due to slow channel inhibition per se, nor to spasmolytic potency or increased cerebral blood flow. Ventilatory drive associated with other cardiopulmonary actions which secondarily raise the brain oxygen supply are likely to be responsible for this effect.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ATWELL R. J., HICKAM J. B., PRYOR W. W., PAGE E. B. Reduction of blood flow through the hypoxic lung. Am J Physiol. 1951 Jul;166(1):37–44. doi: 10.1152/ajplegacy.1951.166.1.37. [DOI] [PubMed] [Google Scholar]
- Alberti E., Hoyer S., Hamer J., Stoeckel H., Packschiess P., Weinhardt F. The effect of carbon dioxide on cerebral blood flow and cerebral metabolism in dogs. Br J Anaesth. 1975 Sep;47(9):941–947. doi: 10.1093/bja/47.9.941. [DOI] [PubMed] [Google Scholar]
- Borgström L., Jóhannsson H., Siesjö B. K. The relationship between arterial po2 and cerebral blood flow in hypoxic hypoxia. Acta Physiol Scand. 1975 Mar;93(3):423–432. doi: 10.1111/j.1748-1716.1975.tb05832.x. [DOI] [PubMed] [Google Scholar]
- Bourassa M. G., Cote P., Theroux P., Tubau J. F., Genain C., Waters D. D. Hemodynamics and coronary flow following diltiazem administration in anesthetized dogs and in humans. Chest. 1980 Jul;78(1 Suppl):224–230. doi: 10.1378/chest.78.1_supplement.224. [DOI] [PubMed] [Google Scholar]
- Cartheuser C. F. Verapamil enhances brain function tolerance against severe hypoxia without enhancing cerebral blood flow in the rat. Pharmacology. 1987;35(2):101–111. doi: 10.1159/000138301. [DOI] [PubMed] [Google Scholar]
- Edvinsson L., Johansson B. B., Larsson B., MacKenzie E. T., Skärby T., Young A. R. Calcium antagonists: effects on cerebral blood flow and blood-brain barrier permeability in the rat. Br J Pharmacol. 1983 May;79(1):141–148. doi: 10.1111/j.1476-5381.1983.tb10506.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eklöf B., Lassen N. A., Nilsson L., Norberg K., Siesjö B. K. Blood flow and metabolic rate for oxygen in the cerebral cortex of the rat. Acta Physiol Scand. 1973 Aug;88(4):587–589. doi: 10.1111/j.1748-1716.1973.tb05489.x. [DOI] [PubMed] [Google Scholar]
- Ell J., Gresty M. The effects of the "vestibular sedative" drug, Flunarizine upon the vestibular and oculomotor systems. J Neurol Neurosurg Psychiatry. 1983 Aug;46(8):716–724. doi: 10.1136/jnnp.46.8.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gotoh O., Mohamed A. A., McCulloch J., Graham D. I., Harper A. M., Teasdale G. M. Nimodipine and the haemodynamic and histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. 1986 Jun;6(3):321–331. doi: 10.1038/jcbfm.1986.55. [DOI] [PubMed] [Google Scholar]
- Gottstein U. Behandlung der cerebralen Mangeldurchblutung. Eine kritische Ubersicht. Internist (Berl) 1974 Dec;15(12):575–587. [PubMed] [Google Scholar]
- Hakim A. M. Cerebral acidosis in focal ischemia: II. Nimodipine and verapamil normalize cerebral pH following middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab. 1986 Dec;6(6):676–683. doi: 10.1038/jcbfm.1986.123. [DOI] [PubMed] [Google Scholar]
- Harper A. M., Craigen L., Kazda S. Effect of the calcium antagonist, nimodipine, on cerebral blood flow and metabolism in the primate. J Cereb Blood Flow Metab. 1981;1(3):349–356. doi: 10.1038/jcbfm.1981.38. [DOI] [PubMed] [Google Scholar]
- Herrschaft H. Die Therapie der cerebralen Mangeldurchblutung. Nervenarzt. 1976 Nov;47(11):639–650. [PubMed] [Google Scholar]
- Kamiya K. [Effect of Ca2+ antagonists on experimental cerebral vasospasm (author's transl)]. Neurol Med Chir (Tokyo) 1980 Aug;20(8):805–816. doi: 10.2176/nmc.20.805. [DOI] [PubMed] [Google Scholar]
- Kazda S., Garthoff B., Krause H. P., Schlossmann K. Cerebrovascular effects of the calcium antagonistic dihydropyridine derivative nimodipine in animal experiments. Arzneimittelforschung. 1982;32(4):331–338. [PubMed] [Google Scholar]
- Kogure K., Scheinberg P., Reinmuth O. M., Fujishima M., Busto R. Mechanisms of cerebral vasodilatation in hypoxia. J Appl Physiol. 1970 Aug;29(2):223–229. doi: 10.1152/jappl.1970.29.2.223. [DOI] [PubMed] [Google Scholar]
- Komarek J., Hüsselrath A., Just M. Die Wirkung von Pentoxifyllin auf die Gehirndurchblutung und den Gehirnstoffwechsel beim Hund. Arzneimittelforschung. 1977;27(10):1939–1942. [PubMed] [Google Scholar]
- Krieglstein J., Weber J. Calcium entry blockers protect brain energy metabolism against ischemic damage. Adv Exp Med Biol. 1986;200:243–251. doi: 10.1007/978-1-4684-5188-7_31. [DOI] [PubMed] [Google Scholar]
- Köhler E., Motzer S., Noack E., Greeff K. Die kardiale Nebenwirkung des Bencyclans (Fludilat) Dtsch Med Wochenschr. 1975 Feb 28;100(9):427–429. doi: 10.1055/s-0028-1106232. [DOI] [PubMed] [Google Scholar]
- Lassen N. A. Brain extracellular pH: the main factor controlling cerebral blood flow. Scand J Clin Lab Invest. 1968 Dec;22(4):247–251. doi: 10.3109/00365516809167060. [DOI] [PubMed] [Google Scholar]
- McMurtry I. F., Davidson A. B., Reeves J. T., Grover R. F. Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res. 1976 Feb;38(2):99–104. doi: 10.1161/01.res.38.2.99. [DOI] [PubMed] [Google Scholar]
- McMurtry I. F., Rounds S., Stanbrook H. S. Studies of the mechanism of hypoxic pulmonary vasoconstriction. Adv Shock Res. 1982;8:21–33. [PubMed] [Google Scholar]
- Müller-Schweinitzer E., Neumann P. In vitro effects of calcium antagonists PN 200-110, nifedipine, and nimodipine on human and canine cerebral arteries. J Cereb Blood Flow Metab. 1983 Sep;3(3):354–361. doi: 10.1038/jcbfm.1983.51. [DOI] [PubMed] [Google Scholar]
- SOKOLOFF L. The action of drugs on the cerebral circulation. Pharmacol Rev. 1959 Mar;11(1):1–85. [PubMed] [Google Scholar]
- Walden J., Speckmann E. J., Witte O. W. Suppression of focal epileptiform discharges by intraventricular perfusion of a calcium antagonist. Electroencephalogr Clin Neurophysiol. 1985 Oct;61(4):299–309. doi: 10.1016/0013-4694(85)91096-x. [DOI] [PubMed] [Google Scholar]
- White R. P., Cunningham M. P., Robertson J. T. Effect of the calcium antagonist nimodipine on contractile responses of isolated canine basilar arteries induced by serotonin, prostaglandin F2 alpha, thrombin, and whole blood. Neurosurgery. 1982 Mar;10(3):344–348. doi: 10.1227/00006123-198203000-00008. [DOI] [PubMed] [Google Scholar]
- Zelis R., Flaim S. F. "Calcium influx blockers" and vascular smooth muscle: do we really understand the mechanisms? Ann Intern Med. 1981 Jan;94(1):124–126. doi: 10.7326/0003-4819-94-1-124. [DOI] [PubMed] [Google Scholar]
