Abstract
1. The electrophysiological actions of the GABAB agonist, (-)-baclofen, on deep dorsal horn neurones were studied using an in vitro preparation of the spinal cord of 9-16 day old rat. 2. On all neurones tested, (-)-baclofen (100 nM-30 microM) had a hyperpolarizing action which was associated with a reduction in apparent membrane input resistance. The increase in membrane conductance was dose-dependent and had a Hill coefficient of 1.0. 3. The (-)-baclofen-activated hyperpolarization persisted in the presence of bicuculline (50 microM) and Mg2+ (20 mM). 4. The reversal potential of the hyperpolarizing event was estimated at 102 mV and was made less negative by increasing the external concentration of potassium ions. 5. Over the same concentration range, (-)-baclofen also depressed the polysynaptic composite excitatory postsynaptic potentials (e.p.s.ps) evoked in these neurones by electrical stimulation of the dorsal root entry zone. 6. The potassium channel blockers caesium, applied intracellularly, and barium, applied extracellularly, depressed the postsynaptic response to baclofen but not its effect on e.p.s.ps. 7. We propose that (-)-baclofen has more than one mechanism of action in spinal dorsal horn: a postsynaptic action mediated via an increase in potassium conductance and a presynaptic action that is not associated with potassium channels and may be mediated via calcium channels. Since previous studies have demonstrated little effect of (-)-baclofen on transmitter release in spinal cord, it is possible that the postsynaptic hyperpolarizing action of (-)-baclofen may account for its clinical potency as an anti-spastic agent.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Curtis D. R., Game C. J., Johnston G. A., McCulloch R. M. Central effects of beta-(para-chlorophenyl)-gamma-aminobutyric acid. Brain Res. 1974 Apr 26;70(3):493–499. doi: 10.1016/0006-8993(74)90257-1. [DOI] [PubMed] [Google Scholar]
- Curtis D. R., Lodge D., Bornstein J. C., Peet M. J. Selective effects of (-)-baclofen on spinal synaptic transmission in the cat. Exp Brain Res. 1981;42(2):158–170. doi: 10.1007/BF00236902. [DOI] [PubMed] [Google Scholar]
- Curtis D. R., Malik R. The differential effects of baclofen on segmental and descending excitation of spinal interneurones in the cat. Exp Brain Res. 1985;58(2):333–337. doi: 10.1007/BF00235314. [DOI] [PubMed] [Google Scholar]
- Davies J. Selective depression of synaptic excitation in cat spinal neurones by baclofen: an iontophoretic study. Br J Pharmacol. 1981 Feb;72(2):373–384. doi: 10.1111/j.1476-5381.1981.tb09137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Désarmenien M., Feltz P., Occhipinti G., Santangelo F., Schlichter R. Coexistence of GABAA and GABAB receptors on A delta and C primary afferents. Br J Pharmacol. 1984 Feb;81(2):327–333. doi: 10.1111/j.1476-5381.1984.tb10082.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox S., Krnjević K., Morris M. E., Puil E., Werman R. Action of baclofen on mammalian synaptic transmission. Neuroscience. 1978;3(6):495–515. doi: 10.1016/0306-4522(78)90016-7. [DOI] [PubMed] [Google Scholar]
- Henry J. L., Ben-Ari Y. Actions of the p-chlorophenyl derivative of GABA, Lioresal, on nociceptive and non-nociceptive units in the spinal cord of the cat. Brain Res. 1976 Dec 3;117(3):540–544. doi: 10.1016/0006-8993(76)90764-2. [DOI] [PubMed] [Google Scholar]
- Heyer E. J., Nowak L. M., Macdonald R. L. Membrane depolarization and prolongation of calcium-dependent action potentials of mouse neurons in cell culture by two convulsants: bicuculline and penicillin. Brain Res. 1982 Jan 28;232(1):41–56. doi: 10.1016/0006-8993(82)90609-6. [DOI] [PubMed] [Google Scholar]
- Inoue M., Matsuo T., Ogata N. Baclofen activates voltage-dependent and 4-aminopyridine sensitive K+ conductance in guinea-pig hippocampal pyramidal cells maintained in vitro. Br J Pharmacol. 1985 Apr;84(4):833–841. doi: 10.1111/j.1476-5381.1985.tb17377.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inoue M., Matsuo T., Ogata N. Characterization of pre- and postsynaptic actions of (-)-baclofen in the guinea-pig hippocampus in vitro. Br J Pharmacol. 1985 Apr;84(4):843–851. doi: 10.1111/j.1476-5381.1985.tb17378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murase K., Nedeljkov V., Randić M. The actions of neuropeptides on dorsal horn neurons in the rat spinal cord slice preparation: an intracellular study. Brain Res. 1982 Feb 18;234(1):170–176. doi: 10.1016/0006-8993(82)90483-8. [DOI] [PubMed] [Google Scholar]
- Newberry N. R., Nicoll R. A. Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol. 1985 Mar;360:161–185. doi: 10.1113/jphysiol.1985.sp015610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newberry N. R., Nicoll R. A. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. 1984 Mar 29-Apr 4Nature. 308(5958):450–452. doi: 10.1038/308450a0. [DOI] [PubMed] [Google Scholar]
- Pierau F. K., Zimmermann P. Action of a GABA-derivative on postsynaptic potentials and membrane properties of cats' spinal motoneurones. Brain Res. 1973 May 17;54:376–380. doi: 10.1016/0006-8993(73)90064-4. [DOI] [PubMed] [Google Scholar]
- Piercey M. F., Hollister R. P. Effects of intravenous baclofen on dorsal horn neurons of spinal cats. Eur J Pharmacol. 1979 Feb 1;53(4):379–382. doi: 10.1016/0014-2999(79)90463-1. [DOI] [PubMed] [Google Scholar]
- Pinnock R. D. Hyperpolarizing action of baclofen on neurons in the rat substantia nigra slice. Brain Res. 1984 Nov 26;322(2):337–340. doi: 10.1016/0006-8993(84)90129-x. [DOI] [PubMed] [Google Scholar]
- Price G. W., Wilkin G. P., Turnbull M. J., Bowery N. G. Are baclofen-sensitive GABAB receptors present on primary afferent terminals of the spinal cord? Nature. 1984 Jan 5;307(5946):71–74. doi: 10.1038/307071a0. [DOI] [PubMed] [Google Scholar]
- Robertson B., Taylor W. R. Effects of gamma-aminobutyric acid and (-)-baclofen on calcium and potassium currents in cat dorsal root ganglion neurones in vitro. Br J Pharmacol. 1986 Dec;89(4):661–672. doi: 10.1111/j.1476-5381.1986.tb11170.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlichter R., Demeneix B. A., Desarmenien M., Desaulles E., Loeffler J. P., Feltz P. Properties of the GABA receptors located on spinal primary afferent neurones and hypophyseal neuroendocrine cells of the rat. Neurosci Lett. 1984 Jun 29;47(3):257–263. doi: 10.1016/0304-3940(84)90523-8. [DOI] [PubMed] [Google Scholar]