Abstract
1. The aim of this study was to characterize the 5-hydroxytryptamine (5-HT) receptor which mediates contraction of canine and primate isolated basilar artery by use of a variety of selective 5-HT agonists and antagonists. 2. 5-HT, alpha-methyl 5-HT and the selective 5-HT1-like receptor agonists, GR43175 and 5-carboxamidotryptamine (5-CT), each caused contraction of canine and primate basilar artery with a rank order of agonist potency of 5-CT greater than or equal to 5-HT greater than GR43175 greater than alpha-methyl 5-HT. The 5-HT1-like receptor agonists, GR43175 and 5-CT, produced maximum effects which were less than that produced by 5-HT or alpha-methyl 5-HT. 3. In canine basilar artery, ketanserin (0.1-1 microM) caused some depression of the maximum effect of 5-HT but produced little or no shift of the concentration-effect curve. The contractile effects of GR43175 were not modified by ketanserin (1 microM), MDL72222 (1 microM) or cyanopindolol (1 microM). However, the effects of 5-HT and GR43175 were specifically antagonized by methiothepin (0.1 microM); the mean agonist concentration-ratios were 33 and 48 respectively. 4. In primate basilar artery, ketanserin (1 microM) again caused a small depression of the 5-HT maximum response but had not effect against GR43175-induced contractions. In contrast, methiothepin (0.1 microM) antagonized both 5-HT- and GR43175-induced contractions; the mean agonist concentration-ratios were 35 for both.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apperley E., Humphrey P. P., Levy G. P. Receptors for 5-hydroxytryptamine and noradrenaline in rabbit isolated ear artery and aorta. Br J Pharmacol. 1976 Oct;58(2):211–221. doi: 10.1111/j.1476-5381.1976.tb10398.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradley P. B., Engel G., Feniuk W., Fozard J. R., Humphrey P. P., Middlemiss D. N., Mylecharane E. J., Richardson B. P., Saxena P. R. Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology. 1986 Jun;25(6):563–576. doi: 10.1016/0028-3908(86)90207-8. [DOI] [PubMed] [Google Scholar]
- Bradley P. B., Humphrey P. P., Williams R. H. Evidence for the existence of 5-hydroxytryptamine receptors, which are not of the 5-HT2 type, mediating contraction of rabbit isolated basilar artery. Br J Pharmacol. 1986 Jan;87(1):3–4. doi: 10.1111/j.1476-5381.1986.tb10149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang J. Y., Hardebo J. E., Owman C., Sahlin C., Svendgaard N. A. Nerves containing serotonin, its interaction with noradrenaline, and characterization of serotonin receptors in cerebral arteries of monkey. J Auton Pharmacol. 1987 Dec;7(4):317–329. doi: 10.1111/j.1474-8673.1987.tb00160.x. [DOI] [PubMed] [Google Scholar]
- Chang J. Y., Owman C. Involvement of specific receptors and calcium mechanisms in serotonergic contractile response of isolated cerebral and peripheral arteries from rats. J Pharmacol Exp Ther. 1987 Aug;242(2):629–636. [PubMed] [Google Scholar]
- Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
- Cohen M. L., Colbert W. E. Relationship between receptors mediating serotonin (5-HT) contractions in the canine basilar artery to 5-HT1, 5-HT2 and rat stomach fundus 5-HT receptors. J Pharmacol Exp Ther. 1986 Jun;237(3):713–718. [PubMed] [Google Scholar]
- Doenicke A., Brand J., Perrin V. L. Possible benefit of GR43175, a novel 5-HT1-like receptor agonist, for the acute treatment of severe migraine. Lancet. 1988 Jun 11;1(8598):1309–1311. doi: 10.1016/s0140-6736(88)92122-8. [DOI] [PubMed] [Google Scholar]
- Feniuk W., Humphrey P. P., Perren M. J., Watts A. D. A comparison of 5-hydroxytryptamine receptors mediating contraction in rabbit aorta and dog saphenous vein: evidence for different receptor types obtained by use of selective agonists and antagonists. Br J Pharmacol. 1985 Nov;86(3):697–704. doi: 10.1111/j.1476-5381.1985.tb08948.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuring R. E., Peroutka S. J. Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci. 1987 Mar;7(3):894–903. doi: 10.1523/JNEUROSCI.07-03-00894.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoyer D., Engel G., Kalkman H. O. Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (-)[125I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. Eur J Pharmacol. 1985 Nov 26;118(1-2):13–23. doi: 10.1016/0014-2999(85)90658-2. [DOI] [PubMed] [Google Scholar]
- Humphrey P. P., Feniuk W., Perren M. J., Connor H. E., Oxford A. W., Coates L. H., Butina D. GR43175, a selective agonist for the 5-HT1-like receptor in dog isolated saphenous vein. Br J Pharmacol. 1988 Aug;94(4):1123–1132. doi: 10.1111/j.1476-5381.1988.tb11630.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leff P., Martin G. R., Morse J. M. Differential classification of vascular smooth muscle and endothelial cell 5-HT receptors by use of tryptamine analogues. Br J Pharmacol. 1987 Jun;91(2):321–331. doi: 10.1111/j.1476-5381.1987.tb10287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Middlemiss D. N., Fozard J. R. 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol. 1983 May 20;90(1):151–153. doi: 10.1016/0014-2999(83)90230-3. [DOI] [PubMed] [Google Scholar]
- Müller-Schweinitzer E., Engel G. Evidence for mediation by 5-HT2 receptors of 5-hydroxytryptamine-induced contraction of canine basilar artery. Naunyn Schmiedebergs Arch Pharmacol. 1983 Dec;324(4):287–292. doi: 10.1007/BF00502625. [DOI] [PubMed] [Google Scholar]
- Peroutka S. J., Huang S., Allen G. S. Canine basilar artery contractions mediated by 5-hydroxytryptamine1A receptors. J Pharmacol Exp Ther. 1986 Jun;237(3):901–906. [PubMed] [Google Scholar]
- Peroutka S. J., Noguchi M., Tolner D. J., Allen G. S. Serotonin-induced contraction of canine basilar artery: mediation by 5-HT1 receptors. Brain Res. 1983 Jan 24;259(2):327–330. doi: 10.1016/0006-8993(83)91268-4. [DOI] [PubMed] [Google Scholar]
- Schlicker E., Göthert M., Hillenbrand K. Cyanopindolol is a highly potent and selective antagonist at the presynaptic serotonin autoreceptor in the rat brain cortex. Naunyn Schmiedebergs Arch Pharmacol. 1985 Dec;331(4):398–401. doi: 10.1007/BF00500826. [DOI] [PubMed] [Google Scholar]
- Taylor E. W., Duckles S. P., Nelson D. L. Dissociation constants of serotonin agonists in the canine basilar artery correlate to Ki values at the 5-HT1A binding site. J Pharmacol Exp Ther. 1986 Jan;236(1):118–125. [PubMed] [Google Scholar]
- Trevethick M. A., Feniuk W., Humphrey P. P. 5-Carboxamidotryptamine: a potent agonist mediating relaxation and elevation of cyclic AMP in the isolated neonatal porcine vena cava. Life Sci. 1986 Apr 21;38(16):1521–1528. doi: 10.1016/0024-3205(86)90566-7. [DOI] [PubMed] [Google Scholar]