Abstract
1. We used the bioluminescent protein aequorin, which emits light when it combines with Ca2+, to test the hypothesis that the inotropic and lusitropic actions of DPI 201-106 are due to changes in intracellular Ca2+ handling in papillary muscles from ferrets and guinea-pigs. 2. DPI 201-106 increased peak isometric tension (T) in a dose-dependent manner, with an 83% increase in T as the concentration of DPI 201-106 was increased to 1 x 10(-5) M; however, peak [Ca2+]i did not increase significantly until the concentration of DPI 201-106 reached 3 x 10(-6) M, suggesting a sensitization of the contractile apparatus to Ca2+. 3. Tetrodotoxin (1 x 10(-6) M), which did not reduce the tension response significantly before DPI 201-106, decreased both [Ca2+]i and T in the presence of 1 x 10(-5) M DPI 201-106, suggesting involvement of a sodium channel activation mechanism; however, tetrodotoxin did not completely reverse the calcium sensitization. 4. The shift of the [Ca2+]i versus T relationship was not observed in the presence of another sodium channel agonist, veratridine (3 x 10(-7)-1 x 10(-6) M). 5. In the guinea-pig, DPI 201-106 markedly prolonged relaxation of tension (increase of 60% in the time from peak to 50% tension regression), which was accompanied by the appearance of a second component in the aequorin light signal; effects on relaxation were less prominent in the ferret. 6. Tension prolongation and the second component of the [Ca2+]i transient in the guinea-pig were exacerbated by increased [Ca2+]o and decreased by tetrodotoxin. Ryanodine (3 x 10(-7) M) markedly diminished the calcium transient in controls and the initial component of the calcium transient in the presence of DPI 201-106, but had only a modest effect on the second component. 7. We conclude that although sodium agonism plays a role, sensitization of the contractile apparatus to Ca2+ is an important mechanism in the positive inotropic action of DPI 201-106. 8. The negative lusitropic action of DPI 201-106 varies between ferret and guinea-pig, possibly reflecting differences between these two species in subcellular Ca2+ handling.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen D. G., Jewell B. R., Wood E. H. Studies of the contractility of mammalian myocardium at low rates of stimulation. J Physiol. 1976 Jan;254(1):1–17. doi: 10.1113/jphysiol.1976.sp011217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen D. G., Kurihara S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol. 1982 Jun;327:79–94. doi: 10.1113/jphysiol.1982.sp014221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen D. G., Orchard C. H. The effects of changes of pH on intracellular calcium transients in mammalian cardiac muscle. J Physiol. 1983 Feb;335:555–567. doi: 10.1113/jphysiol.1983.sp014550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alousi A. A., Farah A. E., Lesher G. Y., Opalka C. J., Jr Cardiotonic activity of amrinone--Win 40680 [5-amino-3,4'-bipyridine-6(1H)-one]. Circ Res. 1979 Nov;45(5):666–677. doi: 10.1161/01.res.45.5.666. [DOI] [PubMed] [Google Scholar]
- Benotti J. R., Grossman W., Braunwald E., Davolos D. D., Alousi A. A. Hemodynamic assessment of amrinone. A new inotropic agent. N Engl J Med. 1978 Dec 21;299(25):1373–1377. doi: 10.1056/NEJM197812212992501. [DOI] [PubMed] [Google Scholar]
- Beress L., Ritter R., Ravens U. The influence of the rate of electrical stimulation on the effects of the Anemonia sulcata Toxin ATX II in guinea pig papillary muscle. Eur J Pharmacol. 1982 Apr 23;79(3-4):265–272. doi: 10.1016/0014-2999(82)90632-x. [DOI] [PubMed] [Google Scholar]
- Bers D. M. Ca influx and sarcoplasmic reticulum Ca release in cardiac muscle activation during postrest recovery. Am J Physiol. 1985 Mar;248(3 Pt 2):H366–H381. doi: 10.1152/ajpheart.1985.248.3.H366. [DOI] [PubMed] [Google Scholar]
- Bielefeld D. R., Hadley R. W., Vassilev P. M., Hume J. R. Membrane electrical properties of vesicular Na-Ca exchange inhibitors in single atrial myocytes. Circ Res. 1986 Oct;59(4):381–389. doi: 10.1161/01.res.59.4.381. [DOI] [PubMed] [Google Scholar]
- Blinks J. R., Wier W. G., Hess P., Prendergast F. G. Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol. 1982;40(1-2):1–114. doi: 10.1016/0079-6107(82)90011-6. [DOI] [PubMed] [Google Scholar]
- Bogdanov K. Y., Zakharov S. I., Rosenshtraukh L. V. The origin of two components in contraction of guinea pig papillary muscle in the presence of noradrenaline. Can J Physiol Pharmacol. 1979 Aug;57(8):866–872. doi: 10.1139/y79-132. [DOI] [PubMed] [Google Scholar]
- Brill D. M., Wasserstrom J. A. Intracellular sodium and the positive inotropic effect of veratridine and cardiac glycoside in sheep Purkinje fibers. Circ Res. 1986 Jan;58(1):109–119. doi: 10.1161/01.res.58.1.109. [DOI] [PubMed] [Google Scholar]
- Buggisch D., Isenberg G., Ravens U., Scholtysik G. The role of sodium channels in the effects of the cardiotonic compound DPI 201-106 on contractility and membrane potentials in isolated mammalian heart preparations. Eur J Pharmacol. 1985 Dec 3;118(3):303–311. doi: 10.1016/0014-2999(85)90141-4. [DOI] [PubMed] [Google Scholar]
- Chapman R. A. Control of cardiac contractility at the cellular level. Am J Physiol. 1983 Oct;245(4):H535–H552. doi: 10.1152/ajpheart.1983.245.4.H535. [DOI] [PubMed] [Google Scholar]
- Coraboeuf E. Editorial: Membrane electrical activity and double component contraction in cardiac tissue. J Mol Cell Cardiol. 1974 Jun;6(3):215–225. doi: 10.1016/0022-2828(74)90051-0. [DOI] [PubMed] [Google Scholar]
- Endoh M., Iijima T., Motomura S. Inhibition by theophylline of the early component of canine ventricular contraction. Am J Physiol. 1982 Mar;242(3):H349–H358. doi: 10.1152/ajpheart.1982.242.3.H349. [DOI] [PubMed] [Google Scholar]
- Grossman W., Barry W. H. Diastolic pressure-volume relations in the diseased heart. Fed Proc. 1980 Feb;39(2):148–155. [PubMed] [Google Scholar]
- Gwathmey J. K., Morgan J. P. The effects of milrinone and piroximone on intracellular calcium handling in working myocardium from the ferret. Br J Pharmacol. 1985 May;85(1):97–108. doi: 10.1111/j.1476-5381.1985.tb08835.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hof R. P., Hof A. Mechanism of the vasodilator effects of the cardiotonic agent DPI 201-106. J Cardiovasc Pharmacol. 1985 Nov-Dec;7(6):1188–1192. doi: 10.1097/00005344-198511000-00028. [DOI] [PubMed] [Google Scholar]
- Holck M., Osterrieder W. Interaction of the cardiotonic agent DPI 201-106 with cardiac Ca2+ channels. J Cardiovasc Pharmacol. 1988 Apr;11(4):478–482. doi: 10.1097/00005344-198804000-00015. [DOI] [PubMed] [Google Scholar]
- Honerjäger P., Reiter M. The relation between the effects of veratridine on action potential and contraction in mammalian ventricular myocardium. Naunyn Schmiedebergs Arch Pharmacol. 1975;289(1):1–28. doi: 10.1007/BF00498026. [DOI] [PubMed] [Google Scholar]
- January C. T., Fozzard H. A. The effects of membrane potential, extracellular potassium, and tetrodotoxin on the intracellular sodium ion activity of sheep cardiac muscle. Circ Res. 1984 Jun;54(6):652–665. doi: 10.1161/01.res.54.6.652. [DOI] [PubMed] [Google Scholar]
- King B. W., Bose D. Mechanism of biphasic contractions in strontium-treated ventricular muscle. Circ Res. 1983 Jan;52(1):65–75. doi: 10.1161/01.res.52.1.65. [DOI] [PubMed] [Google Scholar]
- Kohlhardt M., Fröbe U., Herzig J. W. Modification of single cardiac Na+ channels by DPI 201-106. J Membr Biol. 1986;89(2):163–172. doi: 10.1007/BF01869712. [DOI] [PubMed] [Google Scholar]
- Lado M. G., Sheu S. S., Fozzard H. A. Changes in intracellular Ca2+ activity with stimulation in sheep cardiac Purkinje strands. Am J Physiol. 1982 Jul;243(1):H133–H137. doi: 10.1152/ajpheart.1982.243.1.H133. [DOI] [PubMed] [Google Scholar]
- Malecot C. O., Bers D. M., Katzung B. G. Biphasic contractions induced by milrinone at low temperature in ferret ventricular muscle: role of the sarcoplasmic reticulum and transmembrane calcium influx. Circ Res. 1986 Aug;59(2):151–162. doi: 10.1161/01.res.59.2.151. [DOI] [PubMed] [Google Scholar]
- Morgan J. P., Blinks J. R. Intracellular Ca2+ transients in the cat papillary muscle. Can J Physiol Pharmacol. 1982 Apr;60(4):524–528. doi: 10.1139/y82-072. [DOI] [PubMed] [Google Scholar]
- Morgan J. P., DeFeo T. T., Morgan K. G. A chemical procedure for loading the calcium indicator acquorin into mammalian working myocardium. Pflugers Arch. 1984 Mar;400(3):338–340. doi: 10.1007/BF00581571. [DOI] [PubMed] [Google Scholar]
- Morgan J. P., Morgan K. G. Calcium and cardiovascular function. Intracellular calcium levels during contraction and relaxation of mammalian cardiac and vascular smooth muscle as detected with aequorin. Am J Med. 1984 Nov 5;77(5A):33–46. doi: 10.1016/s0002-9343(84)80006-6. [DOI] [PubMed] [Google Scholar]
- Morgan J. P., Morgan K. G. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol. 1984 Jun;351:155–167. doi: 10.1113/jphysiol.1984.sp015239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan J. P. The effects of digitalis on intracellular calcium transients in mammalian working myocardium as detected with aequorin. J Mol Cell Cardiol. 1985 Nov;17(11):1065–1075. doi: 10.1016/s0022-2828(85)80122-x. [DOI] [PubMed] [Google Scholar]
- Mullins L. J. The generation of electric currents in cardiac fibers by Na/Ca exchange. Am J Physiol. 1979 Mar;236(3):C103–C110. doi: 10.1152/ajpcell.1979.236.3.C103. [DOI] [PubMed] [Google Scholar]
- Narahashi T. Chemicals as tools in the study of excitable membranes. Physiol Rev. 1974 Oct;54(4):813–889. doi: 10.1152/physrev.1974.54.4.813. [DOI] [PubMed] [Google Scholar]
- Page E., Surdyk-Droske M. Distribution, surface density, and membrane area of diadic junctional contacts between plasma membrane and terminal cisterns in mammalian ventricle. Circ Res. 1979 Aug;45(2):260–267. doi: 10.1161/01.res.45.2.260. [DOI] [PubMed] [Google Scholar]
- Reiter M., Stickel F. J. Der Einfluss der Kontraktionsfrequenz auf das Aktionspotential des Meerschweinchem-Papillarmuskels. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1968;260(4):342–365. [PubMed] [Google Scholar]
- Salzmann R., Scholtysik G., Clark B., Berthold R. Cardiovascular actions of DPI 201-106, a novel cardiotonic agent. J Cardiovasc Pharmacol. 1986 Sep-Oct;8(5):1035–1043. doi: 10.1097/00005344-198609000-00023. [DOI] [PubMed] [Google Scholar]
- Scholtysik G., Salzmann R., Berthold R., Herzig J. W., Quast U., Markstein R. DPI 201-106, a novel cardioactive agent. Combination of cAMP-independent positive inotropic, negative chronotropic, action potential prolonging and coronary dilatory properties. Naunyn Schmiedebergs Arch Pharmacol. 1985 May;329(3):316–325. doi: 10.1007/BF00501887. [DOI] [PubMed] [Google Scholar]
- Sutko J. L., Kenyon J. L. Ryanodine modification of cardiac muscle responses to potassium-free solutions. Evidence for inhibition of sarcoplasmic reticulum calcium release. J Gen Physiol. 1983 Sep;82(3):385–404. doi: 10.1085/jgp.82.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutko J. L., Willerson J. T. Ryanodine alteration of the contractile state of rat ventricular myocardium. Comparison with dog, cat, and rabbit ventricular tissues. Circ Res. 1980 Mar;46(3):332–343. doi: 10.1161/01.res.46.3.332. [DOI] [PubMed] [Google Scholar]
- Wier W. G., Kort A. A., Stern M. D., Lakatta E. G., Marban E. Cellular calcium fluctuations in mammalian heart: direct evidence from noise analysis of aequorin signals in Purkinje fibers. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7367–7371. doi: 10.1073/pnas.80.23.7367. [DOI] [PMC free article] [PubMed] [Google Scholar]
