Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Apr;96(4):961–969. doi: 10.1111/j.1476-5381.1989.tb11908.x

Effects of 5-hydroxytryptamine on human isolated placental chorionic arteries and veins.

J Reviriego 1, J Marín 1
PMCID: PMC1854438  PMID: 2743086

Abstract

1. Effects of 5-hydroxytrypamine (5-HT) on cylindrical segments of human chorionic arteries and veins were investigated. Concentrations of 5-HT (up to 3 x 10(-6) M) produced concentration-dependent contractions; higher concentrations induced a reduction of the maximal response. These responses were antagonized by methysergide and ketanserin in a non-competitive manner. The contractions elicited by low 5-HT concentrations were more affected by methysergide (10(-7) M) than by ketanserin (10(-7) M). Ketanserin apparently increased the responses to high 5-HT concentrations in veins. Arteries appeared to be more sensitive to both drugs than veins. Single concentrations of 5-HT elicited transient contractions in both kinds of vessel. 2. Marked tachyphylaxis was seen in segments exposed to high concentrations of 5-HT or in which a concentration-response curve was determined. 3. Contractions induced by 5-HT were reduced in a Ca2+-free medium. Veins were more affected by the Ca2+ antagonists, nifedipine (10(-7) M), nicardipine (10(-5) M) and diltiazem (10(-5) M) than arteries. 4. 5-HT (10(-6) M) enhanced 45Ca2+ uptake in those vessels in which a concentration-response curve had not been previously determined. In veins, this increase was reduced by the three Ca2+ antagonists. 5. The results indicate that 5-HT responses in these vessels were greatly dependent on extracellular Ca2+. A type of 5-HT1-receptor may mediate responses to low 5-HT concentrations, while higher concentrations may activate 5-HT2-receptors. 5-HT may desensitize the latter by interconversion between a high affinity and low affinity state, as suggested by others, a change prevented in part by ketanserin.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASTROM A., SAMELIUS U. The action of 5-hydroxytryptamine and some of its antagonists on the umbilical vessels of the human placenta. Br J Pharmacol Chemother. 1957 Dec;12(4):410–414. doi: 10.1111/j.1476-5381.1957.tb00157.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altura B. M., Malaviya D., Reich C. F., Orkin L. R. Effects of vasoactive agents on isolated human umbilical arteries and veins. Am J Physiol. 1972 Feb;222(2):345–355. doi: 10.1152/ajplegacy.1972.222.2.345. [DOI] [PubMed] [Google Scholar]
  3. Arneklo-Nobin B., Nobin A., Owman C., Törnebrandt K. Serotonergic mechanisms in isolated human peripheral arteries and veins. J Cardiovasc Pharmacol. 1985;7 (Suppl 7):S52–S55. doi: 10.1097/00005344-198500077-00016. [DOI] [PubMed] [Google Scholar]
  4. Bhargava I., Raja P. T. An anatomical study of foetal blood vessels on the chorial surface of the human placenta. Acta Anat (Basel) 1970;75(1):13–26. doi: 10.1159/000143436. [DOI] [PubMed] [Google Scholar]
  5. Bradley P. B., Humphrey P. P., Williams R. H. Evidence for the existence of 5-hydroxytryptamine receptors, which are not of the 5-HT2 type, mediating contraction of rabbit isolated basilar artery. Br J Pharmacol. 1986 Jan;87(1):3–4. doi: 10.1111/j.1476-5381.1986.tb10149.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brazenor R. M., Angus J. A. Actions of serotonin antagonists on dog coronary artery. Eur J Pharmacol. 1982 Jul 30;81(4):569–576. doi: 10.1016/0014-2999(82)90346-6. [DOI] [PubMed] [Google Scholar]
  7. Cauvin C., Loutzenhiser R., Van Breemen C. Mechanisms of calcium antagonist-induced vasodilation. Annu Rev Pharmacol Toxicol. 1983;23:373–396. doi: 10.1146/annurev.pa.23.040183.002105. [DOI] [PubMed] [Google Scholar]
  8. Dyer D. C. The pharmacology of isolated sheep umbilical cord blood vessels. J Pharmacol Exp Ther. 1970 Dec;175(3):565–570. [PubMed] [Google Scholar]
  9. Fleming W. W., Westfall D. P., De la Lande I. S., Jellett L. B. Log-normal distribution of equiefective doses of norepinephrine and acetylcholine in several tissues. J Pharmacol Exp Ther. 1972 May;181(2):339–345. [PubMed] [Google Scholar]
  10. Frenken M., Kaumann A. J. Effects of tryptamine mediated through 2 states of the 5-HT2 receptor in calf coronary artery. Naunyn Schmiedebergs Arch Pharmacol. 1988 May;337(5):484–492. doi: 10.1007/BF00182720. [DOI] [PubMed] [Google Scholar]
  11. Frenken M., Kaumann A. J. Ketanserin causes surmountable antagonism of 5-hydroxytryptamine-induced contractions of large coronary arteries of dog. Naunyn Schmiedebergs Arch Pharmacol. 1985 Jan;328(3):301–303. doi: 10.1007/BF00515557. [DOI] [PubMed] [Google Scholar]
  12. Godfraind T. Calcium exchange in vascular smooth muscle, action of noradrenaline and lanthanum. J Physiol. 1976 Aug;260(1):21–35. doi: 10.1113/jphysiol.1976.sp011501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harder D. R., Waters A. Electromechanical coupling in feline basilar artery in response to serotonin. Eur J Pharmacol. 1983 Sep 16;93(1-2):95–100. doi: 10.1016/0014-2999(83)90034-1. [DOI] [PubMed] [Google Scholar]
  14. Hedner T., Persson B., Berglund G. Ketanserin, a novel 5-hydroxytryptamine antagonist: monotherapy in essential hypertension. Br J Clin Pharmacol. 1983 Aug;16(2):121–125. doi: 10.1111/j.1365-2125.1983.tb04974.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Houston D. S., Vanhoutte P. M. Serotonin and the vascular system. Role in health and disease, and implications for therapy. Drugs. 1986 Feb;31(2):149–163. doi: 10.2165/00003495-198631020-00004. [DOI] [PubMed] [Google Scholar]
  16. Jones J. B., Rowsell A. Fetal 5-hydroxytryptamine levels in late pregnancy. J Obstet Gynaecol Br Commonw. 1973 Aug;80(8):687–689. doi: 10.1111/j.1471-0528.1973.tb16050.x. [DOI] [PubMed] [Google Scholar]
  17. KOREN Z., PFEIFER Y., SULMAN F. G. SEROTONIN CONTENT OF HUMAN PLACENTA AND FETUS DURING PREGNANCY. Am J Obstet Gynecol. 1965 Oct 1;93:411–415. doi: 10.1016/0002-9378(65)90070-0. [DOI] [PubMed] [Google Scholar]
  18. Kaumann A. J., Frenken M. A paradox: the 5-HT2-receptor antagonist ketanserin restores the 5-HT-induced contraction depressed by methysergide in large coronary arteries of calf. Allosteric regulation of 5-HT2-receptors. Naunyn Schmiedebergs Arch Pharmacol. 1985 Jan;328(3):295–300. doi: 10.1007/BF00515556. [DOI] [PubMed] [Google Scholar]
  19. Maggi C. A., Manzini S., Meli A. Contribution of cellular and extracellular Ca2+ during 5-hydroxytryptamine-induced contractions of rabbit ear artery. Eur J Pharmacol. 1983 Oct 28;94(3-4):251–260. doi: 10.1016/0014-2999(83)90414-4. [DOI] [PubMed] [Google Scholar]
  20. Maigaard S., Forman A., Andersson K. E. Relaxant and contractile effects of some amines and prostanoids in myometrial and vascular smooth muscle within the human uteroplacental unit. Acta Physiol Scand. 1986 Sep;128(1):33–40. doi: 10.1111/j.1748-1716.1986.tb07946.x. [DOI] [PubMed] [Google Scholar]
  21. Mak K. K., Gude N. M., Walters W. A., Boura A. L. Effects of vasoactive autacoids on the human umbilical-fetal placental vasculature. Br J Obstet Gynaecol. 1984 Feb;91(2):99–106. doi: 10.1111/j.1471-0528.1984.tb05890.x. [DOI] [PubMed] [Google Scholar]
  22. Marin J., Salaices M., Gómez B., Lluch S. Noradrenergic component in the vasoconstriction induced by 5-hydroxytryptamine in goat cerebral arteries. J Pharm Pharmacol. 1981 Nov;33(11):715–719. doi: 10.1111/j.2042-7158.1981.tb13911.x. [DOI] [PubMed] [Google Scholar]
  23. Marin J., Sanchez C. F. Influence of calcium on noradrenaline release evoked by 5-hydroxytrypamine and potassium from goat pial arteries. J Pharm Pharmacol. 1980 Sep;32(9):643–646. doi: 10.1111/j.2042-7158.1980.tb13021.x. [DOI] [PubMed] [Google Scholar]
  24. Marin J. Vascular effects of calcium antagonists. Uses in some cerebrovascular disorders. Gen Pharmacol. 1988;19(3):295–306. doi: 10.1016/0306-3623(88)90020-1. [DOI] [PubMed] [Google Scholar]
  25. Meisheri K. D., Hwang O., van Breemen C. Evidence for two separated Ca2+ pathways in smooth muscle plasmalemma. J Membr Biol. 1981 Mar 15;59(1):19–25. doi: 10.1007/BF01870817. [DOI] [PubMed] [Google Scholar]
  26. Montenegro R., Knuppel R. A., Shah D., O'Brien W. F. The effect of serotonergic blockade in postpartum preeclamptic patients. Am J Obstet Gynecol. 1985 Sep 15;153(2):130–134. doi: 10.1016/0002-9378(85)90095-x. [DOI] [PubMed] [Google Scholar]
  27. Nair X., Dyer D. C. Responses of guinea pig umbilical vasculature to vasoactive drugs. Eur J Pharmacol. 1974 Aug;27(3):294–304. doi: 10.1016/0014-2999(74)90004-1. [DOI] [PubMed] [Google Scholar]
  28. Nishimura J., Kanaide H., Shogakiuchi Y., Nakamura M. Ketanserin blocks alpha 1-adrenoceptors of porcine vascular smooth muscle cells. Eur J Pharmacol. 1987 Jan 13;133(2):235–238. doi: 10.1016/0014-2999(87)90155-5. [DOI] [PubMed] [Google Scholar]
  29. O'Reilly S., Loncin M. Ceruloplasmin and 5-hydroxyindole metabolism in pregnancy. Am J Obstet Gynecol. 1967 Jan 1;97(1):8–12. doi: 10.1016/0002-9378(67)90584-4. [DOI] [PubMed] [Google Scholar]
  30. Ozaki H., Shibata S., Kitano H., Matsumoto P., Ishida Y. A comparative study of the relaxing effect of nitroprusside and verapamil on human umbilical vessels. Blood Vessels. 1981;18(6):321–329. doi: 10.1159/000158365. [DOI] [PubMed] [Google Scholar]
  31. Purdy R. E., Murray D. L., Stupecky G. L. Receptors for 5-hydroxytryptamine in rabbit blood vessels: activation of alpha adrenoceptors in rabbit thoracic aorta. J Pharmacol Exp Ther. 1987 Feb;240(2):535–541. [PubMed] [Google Scholar]
  32. Ratz P. H., Flaim S. F. Mechanism of 5-HT contraction in isolated bovine ventricular coronary arteries. Evidence for transient receptor-operated calcium influx channels. Circ Res. 1984 Feb;54(2):135–143. doi: 10.1161/01.res.54.2.135. [DOI] [PubMed] [Google Scholar]
  33. Reilly F. D., Russell P. T. Neurohistochemical evidence supporting an absence of adrenergic and cholinergic innervation in the human placenta and umbilical cord. Anat Rec. 1977 Jul;188(3):277–286. doi: 10.1002/ar.1091880302. [DOI] [PubMed] [Google Scholar]
  34. Rusch N. J., Chyatte D., Sundt T. M., Jr, Vanhoutte P. M. 5-hydroxytryptamine: source of activator calcium in human basilar arteries. Stroke. 1985 Jul-Aug;16(4):718–720. doi: 10.1161/01.str.16.4.718. [DOI] [PubMed] [Google Scholar]
  35. Tulenko T. N. Regional sensitivity to vasoactive polypeptides in the human umbilicoplacental vasculature. Am J Obstet Gynecol. 1979 Nov 1;135(5):629–636. doi: 10.1016/s0002-9378(16)32988-x. [DOI] [PubMed] [Google Scholar]
  36. Turlapaty P. D., Altura B. T., Altura B. M. Ethanol reduces Ca2+ concentrations in arterial and venous smooth muscle. Experientia. 1979 May 15;35(5):639–640. doi: 10.1007/BF01960370. [DOI] [PubMed] [Google Scholar]
  37. Van Breemen C., Farinas B. R., Gerba P., McNaughton E. D. Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ Res. 1972 Jan;30(1):44–54. doi: 10.1161/01.res.30.1.44. [DOI] [PubMed] [Google Scholar]
  38. Van Nueten J. M., Janssen P. A., Van Beek J., Xhonneux R., Verbeuren T. J., Vanhoutte P. M. Vascular effects of ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther. 1981 Jul;218(1):217–230. [PubMed] [Google Scholar]
  39. Walker D. W., McLean J. R. Absence of adrenergic nerves in the human placenta. Nature. 1971 Jan 29;229(5283):344–345. doi: 10.1038/229344a0. [DOI] [PubMed] [Google Scholar]
  40. Williams F. M., Leeser J. E., Rawlins M. D. Pharmacodynamics and pharmacokinetics of single doses of ketanserin and propranolol alone and in combination in healthy volunteers. Br J Clin Pharmacol. 1986 Sep;22(3):301–308. doi: 10.1111/j.1365-2125.1986.tb02891.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES