Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Apr;96(4):920–926. doi: 10.1111/j.1476-5381.1989.tb11903.x

Kinins act on B1 or B2 receptors to release conjointly endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells.

P D'Orléans-Juste 1, G de Nucci 1, J R Vane 1
PMCID: PMC1854440  PMID: 2545298

Abstract

1. Bradykinin (Bk) induced the coupled release of endothelium-derived relaxing factor (EDRF) and prostacyclin (PGI2) from bovine aortic endothelial cells grown in culture. The B2 kinin receptor antagonist, [D-Arg0,Hyp3,Thi5,8,D-Phe7]-Bk, abolished this release by Bk. 2. Des-Arg9-Bk, a B1 kinin receptor agonist, also induced the release of EDRF and PGI2, but much higher concentrations were required to obtain a similar release to that induced by Bk. 3. [Leu8],des-Arg9-Bk, a B1 receptor antagonist, significantly reduced the response to des-Arg9-Bk without affecting the release induced by Bk. 4. The release of EDRF and PGI2 induced by arachidonic acid or ADP was not significantly affected by the B2 or the B1 antagonist. 5. We conclude, therefore, that Bk and des-Arg9-Bk were acting respectively on B2 and B1 bradykinin receptors. 6. The possible role of kinin receptors in the release of EDRF and PGI2 from endothelial cells is discussed.

Full text

PDF
920

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altura B. M., Chand N. Bradykinin-induced relaxation of renal and pulmonary arteries is dependent upon intact endothelial cells. Br J Pharmacol. 1981 Sep;74(1):10–11. doi: 10.1111/j.1476-5381.1981.tb09948.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aubert J. F., Waeber B., Nussberger J., Vavrek R., Stewart J. M., Brunner H. R. Influence of endogenous bradykinin on acute blood pressure response to vasopressors in normotensive rats assessed with a bradykinin antagonist. J Cardiovasc Pharmacol. 1988 Jan;11(1):51–55. doi: 10.1097/00005344-198801000-00008. [DOI] [PubMed] [Google Scholar]
  3. Benetos A., Gavras H., Stewart J. M., Vavrek R. J., Hatinoglou S., Gavras I. Vasodepressor role of endogenous bradykinin assessed by a bradykinin antagonist. Hypertension. 1986 Nov;8(11):971–974. doi: 10.1161/01.hyp.8.11.971. [DOI] [PubMed] [Google Scholar]
  4. Berry H. E., Collier J. G., Vane J. R. The generation of kinins in the blood of dogs during hypotension due to haemorrhage. Clin Sci. 1970 Sep;39(3):349–365. doi: 10.1042/cs0390349. [DOI] [PubMed] [Google Scholar]
  5. Cahill M., Fishman J. B., Polgar P. Effect of des arginine9-bradykinin and other bradykinin fragments on the synthesis of prostacyclin and the binding of bradykinin by vascular cells in culture. Agents Actions. 1988 Jul;24(3-4):224–231. doi: 10.1007/BF02028275. [DOI] [PubMed] [Google Scholar]
  6. Carbonell L. F., Carretero O. A., Stewart J. M., Scicli A. G. Effect of a kinin antagonist on the acute antihypertensive activity of enalaprilat in severe hypertension. Hypertension. 1988 Mar;11(3):239–243. doi: 10.1161/01.hyp.11.3.239. [DOI] [PubMed] [Google Scholar]
  7. Carretero O. A., Miyazaki S., Scicli A. G. Role of kinins in the acute antihypertensive effect of the converting enzyme inhibitor, captopril. Hypertension. 1981 Jan-Feb;3(1):18–22. doi: 10.1161/01.hyp.3.1.18. [DOI] [PubMed] [Google Scholar]
  8. Case D. B., Wallace J. M., Keim H. J., Weber M. A., Drayer J. I., White R. P., Sealey J. E., Laragh J. H. Estimating renin participation in hypertension: superiority of converting enzyme inhibitor over saralasin. Am J Med. 1976 Nov;61(5):790–796. doi: 10.1016/0002-9343(76)90160-1. [DOI] [PubMed] [Google Scholar]
  9. Cherry P. D., Furchgott R. F., Zawadzki J. V., Jothianandan D. Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2106–2110. doi: 10.1073/pnas.79.6.2106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Churchill L., Ward P. E. Relaxation of isolated mesenteric arteries by des-Arg9-bradykinin stimulation of B1 receptors. Eur J Pharmacol. 1986 Oct 14;130(1-2):11–18. doi: 10.1016/0014-2999(86)90178-0. [DOI] [PubMed] [Google Scholar]
  11. Cocks T. M., Angus J. A., Campbell J. H., Campbell G. R. Release and properties of endothelium-derived relaxing factor (EDRF) from endothelial cells in culture. J Cell Physiol. 1985 Jun;123(3):310–320. doi: 10.1002/jcp.1041230304. [DOI] [PubMed] [Google Scholar]
  12. Crutchley D. J., Ryan J. W., Ryan U. S., Fisher G. H. Bradykinin-induced release of prostacyclin and thromboxanes from bovine pulmonary artery endothelial cells. Studies with lower homologs and calcium antagonists. Biochim Biophys Acta. 1983 Mar 22;751(1):99–107. doi: 10.1016/0005-2760(83)90261-8. [DOI] [PubMed] [Google Scholar]
  13. Deblois D., Marceau F. The ability of des-Arg9-bradykinin to relax rabbit isolated mesenteric arteries is acquired during in vitro incubation. Eur J Pharmacol. 1987 Oct 6;142(1):141–144. doi: 10.1016/0014-2999(87)90664-9. [DOI] [PubMed] [Google Scholar]
  14. Förstermann U., Trogisch G., Busse R. Species-dependent differences in the nature of endothelium-derived vascular relaxing factor. Eur J Pharmacol. 1984 Nov 27;106(3):639–643. doi: 10.1016/0014-2999(84)90071-2. [DOI] [PubMed] [Google Scholar]
  15. Gavras H., Brunner H. R., Turini G. A., Kershaw G. R., Tifft C. P., Cuttelod S., Gavras I., Vukovich R. A., McKinstry D. N. Antihypertensive effect of the oral angiotensin converting-enzyme inhibitor SQ 14225 in man. N Engl J Med. 1978 May 4;298(18):991–995. doi: 10.1056/NEJM197805042981803. [DOI] [PubMed] [Google Scholar]
  16. Gryglewski R. J., Moncada S., Palmer R. M. Bioassay of prostacyclin and endothelium-derived relaxing factor (EDRF) from porcine aortic endothelial cells. Br J Pharmacol. 1986 Apr;87(4):685–694. doi: 10.1111/j.1476-5381.1986.tb14586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mastrangelo D., Mathison R., Huggel H. J., Dion S., D'Orléans-Juste P., Rhaleb N. E., Drapeau G., Rovero P., Regoli D. The rat isolated portal vein: a preparation sensitive to neurokinins, particularly neurokinin B. Eur J Pharmacol. 1987 Feb 24;134(3):321–326. doi: 10.1016/0014-2999(87)90363-3. [DOI] [PubMed] [Google Scholar]
  18. Morgan-Boyd R., Stewart J. M., Vavrek R. J., Hassid A. Effects of bradykinin and angiotensin II on intracellular Ca2+ dynamics in endothelial cells. Am J Physiol. 1987 Oct;253(4 Pt 1):C588–C598. doi: 10.1152/ajpcell.1987.253.4.C588. [DOI] [PubMed] [Google Scholar]
  19. Regoli D., Barabé J., Park W. K. Receptors for bradykinin in rabbit aortae. Can J Physiol Pharmacol. 1977 Aug;55(4):855–867. doi: 10.1139/y77-115. [DOI] [PubMed] [Google Scholar]
  20. Regoli D., Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980 Mar;32(1):1–46. [PubMed] [Google Scholar]
  21. Regoli D., Drapeau G., Rovero P., Dion S., D'Orléans-Juste P., Barabé J. The actions of kinin antagonists on B1 and B2 receptor systems. Eur J Pharmacol. 1986 Apr 9;123(1):61–65. doi: 10.1016/0014-2999(86)90687-4. [DOI] [PubMed] [Google Scholar]
  22. Salmon J. A. A radioimmunoassay for 6-keto-prostaglandin F1alpha. Prostaglandins. 1978 Mar;15(3):383–397. doi: 10.1016/0090-6980(78)90122-3. [DOI] [PubMed] [Google Scholar]
  23. Sawada S., Toyoda T., Takamatsu H., Niwa I., Maebo N., Tsuji H., Nakagawa M., Ijichi H. Prostacyclin generation by cultured human vascular endothelial cells with reference to angiotensin I-converting enzyme. Jpn Circ J. 1986 Mar;50(3):242–247. doi: 10.1253/jcj.50.242. [DOI] [PubMed] [Google Scholar]
  24. Scicli A. G., Mindroiu T., Scicli G., Carretero O. A. Blood kinins, their concentration in normal subjects and in patients with congenital deficiency in plasma prekallikrein and kininogen. J Lab Clin Med. 1982 Jul;100(1):81–93. [PubMed] [Google Scholar]
  25. VANE J. R. THE USE OF ISOLATED ORGANS FOR DETECTING ACTIVE SUBSTANCES IN THE CIRCULATING BLOOD. Br J Pharmacol Chemother. 1964 Oct;23:360–373. doi: 10.1111/j.1476-5381.1964.tb01592.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van de Velde V. J., Van den Bossche R. M., Bult H., Herman A. G. Modulation of prostacyclin biosynthesis by calcium entry blockers and extracellular calcium. Biochem Pharmacol. 1986 Jan 15;35(2):253–256. doi: 10.1016/0006-2952(86)90522-8. [DOI] [PubMed] [Google Scholar]
  27. Vavrek R. J., Stewart J. M. Competitive antagonists of bradykinin. Peptides. 1985 Mar-Apr;6(2):161–164. doi: 10.1016/0196-9781(85)90033-6. [DOI] [PubMed] [Google Scholar]
  28. Waeber B., Aubert J. F., Nussberger J., Vavrek R., Stewart J. M., Brunner H. R. Influence of bradykinin on blood pressure regulation of spontaneously hypertensive rats maintained on different sodium intakes. Clin Exp Pharmacol Physiol. 1987 Aug;14(8):659–664. doi: 10.1111/j.1440-1681.1987.tb01887.x. [DOI] [PubMed] [Google Scholar]
  29. de Nucci G., Gryglewski R. J., Warner T. D., Vane J. R. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2334–2338. doi: 10.1073/pnas.85.7.2334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. de Nucci G., Warner T., Vane J. R. Effect of captopril on the bradykinin-induced release of prostacyclin from guinea-pig lungs and bovine aortic endothelial cells. Br J Pharmacol. 1988 Nov;95(3):783–788. doi: 10.1111/j.1476-5381.1988.tb11705.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES