Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 May;97(1):65–70. doi: 10.1111/j.1476-5381.1989.tb11924.x

Prejunctional modulation of acetylcholine release from the skeletal neuromuscular junction: link between positive (nicotinic)- and negative (muscarinic)-feedback modulation.

E S Vizi 1, G T Somogyi 1
PMCID: PMC1854489  PMID: 2720313

Abstract

1. Presynaptic receptor-mediated modulation of stimulation-evoked [3H]-acetylcholine[( 3H]-ACh) release from the neuromuscular junction was studied in the region of the mouse hemidiaphragm which contains the motor endplates, and which can easily be loaded with [3H]-choline. This method made it possible to detect exclusively the [Ca2+]0-dependent, quantal release of [3H]-ACh in response to axonal stimulation. 2. Atropine enhanced, and non-depolarizing muscle relaxants [+)-tubocurarine, pancuronium and pipecuronium) reduced, the release of [3H]-ACh evoked by high frequency trains of stimulation (50 Hz, 40 shocks) of the phrenic nerve. The effect of (+)-tubocurarine was frequency-dependent as at 5 Hz (40 shocks) it was less effective than at 50 Hz. The resting release of [3H]-ACh was not affected by these compounds. These findings indicate that ACh released into the synaptic gap by axonal firing reaches a concentration sufficient to influence its own release by a prejunctional effect. 3. The anticholinesterase, physostigmine sulphate, enhanced the release of [3H]-ACh in a concentration-dependent manner. This effect was mediated via prejunctional nicotinic receptor stimulation: (+)-tubocurarine, pancuronium and pipecuronium completely prevented the effect of physostigmine. 4. When the prejunctional nicotinic and muscarinic receptors were stimulated by a high concentration of extracellular ACh which had accumulated in the junctional gap in the presence of physostigmine, atropine did not influence the evoked release of [3H]-ACh. However, when the effect of endogenous ACh on nicotinic receptors was prevented by (+)-tubocurarine, atropine enhanced the release.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
65

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbs E. T., Joseph D. N. The effects of atropine and oxotremorine on acetylcholine release in rat phrenic nerve-diaphragm preparations. Br J Pharmacol. 1981 Jun;73(2):481–483. doi: 10.1111/j.1476-5381.1981.tb10446.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baux G., Tauc L. Presynaptic actions of curare and atropine on quantal acetylcholine release at a central synapse of Aplysia. J Physiol. 1987 Jul;388:665–680. doi: 10.1113/jphysiol.1987.sp016637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beránek R., Vyskocil F. The action of tubocurarine and atropine on the normal and denervated rat diaphragm. J Physiol. 1967 Jan;188(1):53–66. doi: 10.1113/jphysiol.1967.sp008123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blaber L. C. The prejunctional actions of some non-depolarizing blocking drugs. Br J Pharmacol. 1973 Jan;47(1):109–116. doi: 10.1111/j.1476-5381.1973.tb08163.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bowman W. C., Marshall I. G., Gibb A. J., Harborne A. J. Feedback control of transmitter release at the neuromuscular junction. Trends Pharmacol Sci. 1988 Jan;9(1):16–20. doi: 10.1016/0165-6147(88)90236-2. [DOI] [PubMed] [Google Scholar]
  6. Bowman W. C. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth Analg. 1980 Dec;59(12):935–943. [PubMed] [Google Scholar]
  7. Bowman W. C., Webb S. N. Tetanic fade during partial transmission failure produced by non-depolarizing neuromuscular blocking drugs in the cat. Clin Exp Pharmacol Physiol. 1976 Nov-Dec;3(6):545–555. doi: 10.1111/j.1440-1681.1976.tb00636.x. [DOI] [PubMed] [Google Scholar]
  8. Chang C. C., Cheng H. C., Chen T. F. Does d-tubocurarine inhibit the release of acetylcholine from motor nerve endings? Jpn J Physiol. 1967 Oct 15;17(5):505–515. doi: 10.2170/jjphysiol.17.505. [DOI] [PubMed] [Google Scholar]
  9. Dale H. H., Feldberg W., Vogt M. Release of acetylcholine at voluntary motor nerve endings. J Physiol. 1936 May 4;86(4):353–380. doi: 10.1113/jphysiol.1936.sp003371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fletcher P., Forrester T. The effect of curare on the release of acetylcholine from mammalian motor nerve terminals and an estimate of quantum content. J Physiol. 1975 Sep;251(1):131–144. doi: 10.1113/jphysiol.1975.sp011084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibb A. J., Marshall I. G. Pre-and post-junctional effects of tubocurarine and other nicotinic antagonists during repetitive stimulation in the rat. J Physiol. 1984 Jun;351:275–297. doi: 10.1113/jphysiol.1984.sp015245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gillberg P. G., Aquilonius S. M., Askmark H., Liljeborg A. In vitro autoradiographic studies of 3H-alpha-bungarotoxin and 3H-quinuclidinylbenzilate binding in rat hind limb muscles. Acta Physiol Scand. 1984 Apr;120(4):617–620. doi: 10.1111/j.1748-1716.1984.tb07429.x. [DOI] [PubMed] [Google Scholar]
  13. Gundersen C. B., Jenden D. J. Oxotremorine does not enhance acetylcholine release from rat diaphragm preparations. Br J Pharmacol. 1980 Sep;70(1):8–10. doi: 10.1111/j.1476-5381.1980.tb10897.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hubbard J. I., Wilson D. F., Miyamoto M. Reduction of transmitter release by D-tubocurarine. Nature. 1969 Aug 2;223(5205):531–533. doi: 10.1038/223531a0. [DOI] [PubMed] [Google Scholar]
  15. Häggblad J., Heilbronn E. Release of acetylcholine at the motor endplate of the rat - evidence against a muscarinic acetylcholine autoreceptor. Br J Pharmacol. 1983 Nov;80(3):471–476. doi: 10.1111/j.1476-5381.1983.tb10717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Katz B., Miledi R. Transmitter leakage from motor nerve endings. Proc R Soc Lond B Biol Sci. 1977 Feb 11;196(1122):59–72. doi: 10.1098/rspb.1977.0029. [DOI] [PubMed] [Google Scholar]
  17. Kilbinger H. Modulation by oxotremorine and atropine of acetylcholine release evoked by electrical stimulation of the myenteric plexus of the guinea-pig ileum. Naunyn Schmiedebergs Arch Pharmacol. 1977 Nov;300(2):145–151. doi: 10.1007/BF00505045. [DOI] [PubMed] [Google Scholar]
  18. Matzner H., Parnas H., Parnas I. Presynaptic effects of d-tubocurarine on neurotransmitter release at the neuromuscular junction of the frog. J Physiol. 1988 Apr;398:109–121. doi: 10.1113/jphysiol.1988.sp017032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mitchell J. F., Silver A. The spontaneous release of acetylcholine from the denervated hemidiaphragm of the rat. J Physiol. 1963 Jan;165(1):117–129. doi: 10.1113/jphysiol.1963.sp007046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Somogyi G. T., Vizi E. S., Chaudhry I. A., Nagashima H., Duncalf D., Foldes F. F., Goldiner P. L. Modulation of stimulation-evoked release of newly formed acetylcholine from mouse hemidiaphragm preparation. Naunyn Schmiedebergs Arch Pharmacol. 1987 Jul;336(1):11–15. doi: 10.1007/BF00177744. [DOI] [PubMed] [Google Scholar]
  21. Szerb J. C., Somogyi G. T. Depression of acetylcholine release from cerebral cortical slices by cholinesterase inhibition and by oxotremorine. Nat New Biol. 1973 Jan 24;241(108):121–122. doi: 10.1038/newbio241121a0. [DOI] [PubMed] [Google Scholar]
  22. Vizi E. S., Ono K., Adam-Vizi V., Duncalf D., Földes F. F. Presynaptic inhibitory effect of Met-enkephalin on [14C] acetylcholine release from the myenteric plexus and its interaction with muscarinic negative feedback inhibition. J Pharmacol Exp Ther. 1984 Aug;230(2):493–499. [PubMed] [Google Scholar]
  23. Vizi E. S., Somogyi G. T., Nagashima H., Duncalf D., Chaudhry I. A., Kobayashi O., Goldiner P. L., Foldes F. F. Tubocurarine and pancuronium inhibit evoked release of acetylcholine from the mouse hemidiaphragm preparation. Br J Anaesth. 1987 Feb;59(2):226–231. doi: 10.1093/bja/59.2.226. [DOI] [PubMed] [Google Scholar]
  24. Vizi E. S., Vyskocil F. Changes in total and quantal release of acetylcholine in the mouse diaphragm during activation and inhibition of membrane ATPase. J Physiol. 1979 Jan;286:1–14. doi: 10.1113/jphysiol.1979.sp012603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Waser P. G., Oxterwalder M., Schönenberger E. Autoradiography of 14C-choline uptake in endplates and skeletal muscle of mice. Naunyn Schmiedebergs Arch Pharmacol. 1978 Apr;302(2):173–179. doi: 10.1007/BF00517984. [DOI] [PubMed] [Google Scholar]
  26. Wessler I., Halank M., Rasbach J., Kilbinger H. Presynaptic nicotine receptors mediating a positive feed-back on transmitter release from the rat phrenic nerve. Naunyn Schmiedebergs Arch Pharmacol. 1986 Dec;334(4):365–372. doi: 10.1007/BF00569371. [DOI] [PubMed] [Google Scholar]
  27. Wessler I., Karl M., Mai M., Diener A. Muscarine receptors on the rat phrenic nerve, evidence for positive and negative muscarinic feedback mechanisms. Naunyn Schmiedebergs Arch Pharmacol. 1987 Jun;335(6):605–612. doi: 10.1007/BF00166975. [DOI] [PubMed] [Google Scholar]
  28. Wessler I., Kilbinger H. Release of [3H]acetylcholine from a modified rat phrenic nerve-hemidiaphragm preparation. Naunyn Schmiedebergs Arch Pharmacol. 1986 Dec;334(4):357–364. doi: 10.1007/BF00569370. [DOI] [PubMed] [Google Scholar]
  29. Wessler I., Rasbach J., Scheuer B., Hillen U., Kilbinger H. Effects of (+)-tubocurarine on [3H]acetylcholine release from the rat phrenic nerve at different stimulation frequencies and train lengths. Naunyn Schmiedebergs Arch Pharmacol. 1987 May;335(5):496–501. doi: 10.1007/BF00169114. [DOI] [PubMed] [Google Scholar]
  30. Wessler I., Steinlein O. Differential release of [3H]acetylcholine from the rat phrenic nerve-hemidiaphragm preparation by electrical nerve stimulation and by high potassium. Neuroscience. 1987 Jul;22(1):289–299. doi: 10.1016/0306-4522(87)90219-3. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES