Abstract
1. The protective effects of some calcium antagonists against different forms of calcium overload contracture were investigated in embryonic chick cardiac myocytes. 2. Tetrodotoxin-sensitive sodium currents were recorded from the myocytes by the whole-cell voltage-clamp technique. Although the peak current was attenuated by veratrine, the inactivation process was markedly inhibited, resulting in a large increase in the total inward current. Action potentials were prolonged by veratrine, automaticity was inhibited and the membrane potential depolarized from -79 to around -45 mV. 3. Measurements of contraction were made from aggregates of myocytes using a video edge detection technique which quantified edge movement. Veratrine caused an initial positive inotropism then inhibited automaticity of aggregates with subsequent development of a tonic contracture to around 300% of the twitch contraction. 4. Veratrine-induced contractures were not significantly affected by 10 microM diltiazem or verapamil. Nifedipine (5 microM), nimodipine (5 microM) and ryanodine (5 microM) also had little effect whilst nicardipine and flunarizine caused a concentration-dependent inhibition of veratrine-induced contractures with IC50s of 3 microM and 2 microM respectively. 5. Veratrine-induced contractures were found to be very sensitive to extracellular calcium concentration with an EC50 of 32 microM. Edge movement associated with beating of the myocytes was much less sensitive to calcium (EC50 = 1 mM). Submaximal veratrine contractures in 20-50 microM extracellular calcium were not potentiated by 1 microM Bay K 8644. 6. Tetrodotoxin also inhibited veratrine-induced contractures but did not affect contractions induced by ouabain in the presence of 10 microM diltiazem. 7. Ouabain-induced contractures were also inhibited by nicardipine and flunarizine indicating that these drugs can protect against calcium overload in embryonic chick heart by a mechanism independent of the normal form of voltage-sensitive sodium or calcium channels.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almers W., McCleskey E. W. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiol. 1984 Aug;353:585–608. doi: 10.1113/jphysiol.1984.sp015352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almers W., McCleskey E. W., Palade P. T. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J Physiol. 1984 Aug;353:565–583. doi: 10.1113/jphysiol.1984.sp015351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alps B. J., Calder C., Hass W. K., Wilson A. D. Comparative protective effects of nicardipine, flunarizine, lidoflazine and nimodipine against ischaemic injury in the hippocampus of the Mongolian gerbil. Br J Pharmacol. 1988 Apr;93(4):877–883. doi: 10.1111/j.1476-5381.1988.tb11475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alps B. J., Calder C., Wilson A. The beneficial effect of nicardipine compared with nifedipine and verapamil in limiting myocardial infarct size in baboons. Arzneimittelforschung. 1983;33(6):868–876. [PubMed] [Google Scholar]
- Barry W. H., Hasin Y., Smith T. W. Sodium pump inhibition, enhanced calcium influx via sodium-calcium exchange, and positive inotropic response in cultured heart cells. Circ Res. 1985 Feb;56(2):231–241. doi: 10.1161/01.res.56.2.231. [DOI] [PubMed] [Google Scholar]
- Chapman R. A., Fozzard H. A., Friedlander I. R., January C. T. Effects of Ca2+/Mg2+ removal on aiNa, aiK, and tension in cardiac Purkinje fibers. Am J Physiol. 1986 Dec;251(6 Pt 1):C920–C927. doi: 10.1152/ajpcell.1986.251.6.C920. [DOI] [PubMed] [Google Scholar]
- Chapman R. A., Rodrigo G. C., Tunstall J., Yates R. J., Busselen P. Calcium paradox of the heart: a role for intracellular sodium ions. Am J Physiol. 1984 Nov;247(5 Pt 2):H874–H879. doi: 10.1152/ajpheart.1984.247.5.H874. [DOI] [PubMed] [Google Scholar]
- Clusin W. T., Hamilton W. E., Nelson D. V. The mechanical activity of chick embryonic myocardial cell aggregates. J Physiol. 1981 Nov;320:149–174. doi: 10.1113/jphysiol.1981.sp013941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donck L. V., Pauwels P. J., Vandeplassche G., Borgers M. Isolated rat cardiac myocytes as an experimental model to study calcium overload: the effect of calcium-entry blockers. Life Sci. 1986 Mar 3;38(9):765–772. doi: 10.1016/0024-3205(86)90592-8. [DOI] [PubMed] [Google Scholar]
- Fosset M., De Barry J., Lenoir M. C., Lazdunski M. Analysis of molecular aspects of Na+ and Ca2+ uptakes by embryonic cardiac cells in culture. J Biol Chem. 1977 Sep 10;252(17):6112–6117. [PubMed] [Google Scholar]
- Hasin Y., Barry W. H. Myocardial metabolic inhibition and membrane potential, contraction, and potassium uptake. Am J Physiol. 1984 Aug;247(2 Pt 2):H322–H329. doi: 10.1152/ajpheart.1984.247.2.H322. [DOI] [PubMed] [Google Scholar]
- Honerjäger P. Cardioactive substances that prolong the open state of sodium channels. Rev Physiol Biochem Pharmacol. 1982;92:1–74. doi: 10.1007/BFb0030502. [DOI] [PubMed] [Google Scholar]
- Horackova M., Vassort G. Ionic mechanism of inotropic effect of veratrine on frog heart. Pflugers Arch. 1973 Jul 31;341(4):281–284. doi: 10.1007/BF01023669. [DOI] [PubMed] [Google Scholar]
- Kim D., Okada A., Smith T. W. Control of cytosolic calcium activity during low sodium exposure in cultured chick heart cells. Circ Res. 1987 Jul;61(1):29–41. doi: 10.1161/01.res.61.1.29. [DOI] [PubMed] [Google Scholar]
- Kim D., Smith T. W. Cellular mechanisms underlying calcium-proton interactions in cultured chick ventricular cells. J Physiol. 1988 Apr;398:391–410. doi: 10.1113/jphysiol.1988.sp017049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koidl B., Tritthart H. A. The effects of ouabain on the electrical and mechanical activities of embryonic chick heart cells in culture. J Mol Cell Cardiol. 1980 Jul;12(7):663–673. doi: 10.1016/0022-2828(80)90097-8. [DOI] [PubMed] [Google Scholar]
- Konnerth A., Lux H. D., Morad M. Proton-induced transformation of calcium channel in chick dorsal root ganglion cells. J Physiol. 1987 May;386:603–633. doi: 10.1113/jphysiol.1987.sp016553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurent S., Kim D., Smith T. W., Marsh J. D. Inotropic effect, binding properties, and calcium flux effects of the calcium channel agonist CGP 28392 in intact cultured embryonic chick ventricular cells. Circ Res. 1985 May;56(5):676–682. doi: 10.1161/01.res.56.5.676. [DOI] [PubMed] [Google Scholar]
- Marban E., Wier W. G. Ryanodine as a tool to determine the contributions of calcium entry and calcium release to the calcium transient and contraction of cardiac Purkinje fibers. Circ Res. 1985 Jan;56(1):133–138. doi: 10.1161/01.res.56.1.133. [DOI] [PubMed] [Google Scholar]
- Miller D. J., Moisescu D. G. The effects of very low external calcium and sodium concentrations on cardiac contractile strength and calcium-sodium antagonism. J Physiol. 1976 Jul;259(2):283–308. doi: 10.1113/jphysiol.1976.sp011466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller D. J., Smith G. L. EGTA purity and the buffering of calcium ions in physiological solutions. Am J Physiol. 1984 Jan;246(1 Pt 1):C160–C166. doi: 10.1152/ajpcell.1984.246.1.C160. [DOI] [PubMed] [Google Scholar]
- Mitchell M. R., Powell T., Terrar D. A., Twist V. W. Strontium, nifedipine and 4-aminopyridine modify the time course of the action potential in cells from rat ventricular muscle. Br J Pharmacol. 1984 Mar;81(3):551–556. doi: 10.1111/j.1476-5381.1984.tb10108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nathan R. D., Bhattacharyya M. L. Perturbations in the membrane potential of cultured heart cells: role of calcium. Am J Physiol. 1984 Aug;247(2 Pt 2):H273–H282. doi: 10.1152/ajpheart.1984.247.2.H273. [DOI] [PubMed] [Google Scholar]
- Northover B. J. Electrical changes produced by injury to the rat myocardium in vitro and the protective effects of certain antiarrhythmic drugs. Br J Pharmacol. 1987 Jan;90(1):131–138. doi: 10.1111/j.1476-5381.1987.tb16832.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pang D. C., Sperelakis N. Veratridine stimulation of calcium uptake by chick embryonic heart cells in culture. J Mol Cell Cardiol. 1982 Dec;14(12):703–709. doi: 10.1016/0022-2828(82)90183-3. [DOI] [PubMed] [Google Scholar]
- Patmore L., Duncan G. P. Effects of calcium channel antagonists and facilitators on beating of primary cultures of embryonic chick heart cells. Br J Pharmacol. 1988 Nov;95(3):771–776. doi: 10.1111/j.1476-5381.1988.tb11703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasmussen C. A., Jr, Sutko J. L., Barry W. H. Effects of ryanodine and caffeine on contractility, membrane voltage, and calcium exchange in cultured heart cells. Circ Res. 1987 Apr;60(4):495–504. doi: 10.1161/01.res.60.4.495. [DOI] [PubMed] [Google Scholar]
- Riccioppo Neto F. R., Sperelakis N. Effects of lidocaine, procaine, procainamide and quinidine on electrophysiological properties of cultured embryonic chick hearts. Br J Pharmacol. 1985 Dec;86(4):817–826. doi: 10.1111/j.1476-5381.1985.tb11103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romey G., Renaud J. F., Fosset M., Lazdunski M. Pharmacological properties of the interaction of a sea anemone polypeptide toxin with cardiac cells in culture. J Pharmacol Exp Ther. 1980 Jun;213(3):607–615. [PubMed] [Google Scholar]
- Spedding M. Activators and inactivators of Ca++ channels: new perspectives. J Pharmacol. 1985 Oct-Dec;16(4):319–343. [PubMed] [Google Scholar]
- Spedding M., Berg C. Interactions between a "calcium channel agonist", Bay K 8644, and calcium antagonists differentiate calcium antagonist subgroups in K+-depolarized smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1984 Nov;328(1):69–75. doi: 10.1007/BF00496109. [DOI] [PubMed] [Google Scholar]
- Sperelakis N., Pappano A. J. Increase in PNa and PK of cultured heart cells produced by veratridine. J Gen Physiol. 1969 Jan;53(1):97–114. doi: 10.1085/jgp.53.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutko J. L., Willerson J. T. Ryanodine alteration of the contractile state of rat ventricular myocardium. Comparison with dog, cat, and rabbit ventricular tissues. Circ Res. 1980 Mar;46(3):332–343. doi: 10.1161/01.res.46.3.332. [DOI] [PubMed] [Google Scholar]
- Tunstall J., Busselen P., Rodrigo G. C., Chapman R. A. Pathways for the movements of ions during calcium-free perfusion and the induction of the 'calcium paradox'. J Mol Cell Cardiol. 1986 Mar;18(3):241–254. doi: 10.1016/s0022-2828(86)80406-0. [DOI] [PubMed] [Google Scholar]
- Ulbricht W. The effect of veratridine on excitable membranes of nerve and muscle. Ergeb Physiol. 1969;61:18–71. doi: 10.1007/BFb0111446. [DOI] [PubMed] [Google Scholar]
