Abstract
1. The effect of muscarinic antagonists considered to be selective for M1 receptors (pirenzepine) and for M2 receptors (gallamine) were studied on bronchoconstriction and bradycardia elicited by stimulation of the vagal nerves and by i.v. acetylcholine (ACh) in anaesthetized rabbits. 2. Pirenzepine was equipotent as an antagonist of ACh-induced responses at postjunctional muscarinic receptors in the heart, lung and blood vessels, whereas gallamine was at least ten times less potent at pulmonary and vascular muscarinic receptors. Thus, gallamine never caused complete inhibition of bronchoconstrictor or hypotensive responses to i.v. ACh, whereas doses of pirenzepine in excess of 1 mumol kg-1 abolished all muscarinic responses. 3. In the lung, both antagonists inhibited bronchoconstriction caused by vagal stimulation and ACh-induced bronchoconstriction to the same extent (pirenzepine, mean ED50 65 +/- 22 and, 130 +/- 28 nmol kg-1 respectively; gallamine, ED50 greater than 10,000 nmol kg-1 for both responses). Enhancement of vagally-induced bronchoconstriction was never observed. 4. In the heart, however, both pirenzepine and gallamine were ten times less potent as antagonists of vagally-induced bradycardia than of ACh-induced bradycardia. This differential blockade was unaltered by propranolol (1 mg kg-1) pretreatment. 5. It is concluded that there is no evidence for M1 or M2 muscarinic receptors in the pulmonary innervation of the rabbit and the potency of the antagonists in abolishing in abolishing vagally-induced bronchoconstriction was consistent with blockade of M3 muscarinic receptors on airway smooth muscle. 6. The results suggest that M2 muscarinic receptors may exert an inhibitory effect on transmission in the parasympathetic nerves innervating the heart in the rabbit.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blaber L. C., Fryer A. D., Maclagan J. Neuronal muscarinic receptors attenuate vagally-induced contraction of feline bronchial smooth muscle. Br J Pharmacol. 1985 Nov;86(3):723–728. doi: 10.1111/j.1476-5381.1985.tb08951.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom J. W., Yamamura H. I., Baumgartener C., Halonen M. A muscarinic receptor with high affinity for pirenzepine mediates vagally induced bronchoconstriction. Eur J Pharmacol. 1987 Jan 6;133(1):21–27. doi: 10.1016/0014-2999(87)90201-9. [DOI] [PubMed] [Google Scholar]
- Eglen R. M., Whiting R. L. Muscarinic receptor subtypes: a critique of the current classification and a proposal for a working nomenclature. J Auton Pharmacol. 1986 Dec;6(4):323–346. doi: 10.1111/j.1474-8673.1986.tb00661.x. [DOI] [PubMed] [Google Scholar]
- Fryer A. D., Maclagan J. Muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol. 1984 Dec;83(4):973–978. doi: 10.1111/j.1476-5381.1984.tb16539.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ito Y., Yoshitomi T. Autoregulation of acetylcholine release from vagus nerve terminals through activation of muscarinic receptors in the dog trachea. Br J Pharmacol. 1988 Mar;93(3):636–646. doi: 10.1111/j.1476-5381.1988.tb10321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeck D., Lindmar R., Löffelholz K., Wanke M. Subtypes of muscarinic receptor on cholinergic nerves and atrial cells of chicken and guinea-pig hearts. Br J Pharmacol. 1988 Feb;93(2):357–366. doi: 10.1111/j.1476-5381.1988.tb11442.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maclagan J., Fryer A. D., Faulkner D. Identification of M1 muscarinic receptors in pulmonary sympathetic nerves in the guinea-pig by use of pirenzepine. Br J Pharmacol. 1989 Jun;97(2):499–505. doi: 10.1111/j.1476-5381.1989.tb11978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mann S. P. The innervation of mammalian bronchial smooth muscle: the localization of catecholamines and cholinesterases. Histochem J. 1971 Sep;3(5):319–331. doi: 10.1007/BF01005014. [DOI] [PubMed] [Google Scholar]
- Wetzel G. T., Brown J. H. Presynaptic modulation of acetylcholine release from cardiac parasympathetic neurons. Am J Physiol. 1985 Jan;248(1 Pt 2):H33–H39. doi: 10.1152/ajpheart.1985.248.1.H33. [DOI] [PubMed] [Google Scholar]
