Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Jun;97(2):619–625. doi: 10.1111/j.1476-5381.1989.tb11994.x

Depression of maximum rate of depolarization of guinea-pig ventricular action potentials by metabolites of encainide.

P D Hemsworth 1, T J Campbell 1
PMCID: PMC1854529  PMID: 2503225

Abstract

1. Standard microelectrode methods have been used to record action potentials from guinea-pig ventricular myocardium and dog Purkinje fibres, and to study the effects of the two major metabolites of encainide, O-desmethyl encainide (ODE) and 3-methoxy-O-desmethyl encainide (MODE). 2. In concentrations similar to those found in patients during chronic encainide therapy, neither ODE nor MODE produced significant depression of maximum rate of depolarization (Vmax) of action potentials in unstimulated tissue. Repetitive stimulation, however, was associated with depression of Vmax which increased with increasing driving rates (rate-dependent block, RDB). At the fastest rate studied (interstimulus interval = 300 ms) ODE 1 microM depressed Vmax by 47.5 +/- 5.7% and MODE 1 microM, reduced Vmax by 52.2 +/- 12%. 3. The onset and offset kinetics of this rate-dependent block were very slow. Full development of RDB during a train required over 100 action potentials and the time constants of recovery of Vmax from RDB were 86.4 +/- 37 s for ODE and 100.4 +/- 18 s for MODE. The amount of RDB and its rate of onset increased with drug concentration. The recovery time constants were independent of inter-stimulus interval or drug concentration. Both metabolites also produced rate-dependent depression of conduction velocity in canine Purkinje fibres, but no evidence of selective depression of conduction of interpolated premature potentials was seen. 4. Early afterdepolarizations occurred spontaneously in three preparations in the presence of MODE, 1 microM and one preparation in ODE, 1 microM. 5. It is concluded that these metabolites of encainide may play a role in producing both its antiarrhythmic and its proarrhythmic effects.

Full text

PDF
619

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbey J. T., Thompson K. A., Echt D. S., Woosley R. L., Roden D. M. Antiarrhythmic activity, electrocardiographic effects and pharmacokinetics of the encainide metabolites O-desmethyl encainide and 3-methoxy-O-desmethyl encainide in man. Circulation. 1988 Feb;77(2):380–391. doi: 10.1161/01.cir.77.2.380. [DOI] [PubMed] [Google Scholar]
  2. Byrne J. E., Gomoll A. W., McKinney G. R. Antiarrhythmic properties of MJ 9067 in acute animal models. J Pharmacol Exp Ther. 1977 Jan;200(1):147–154. [PubMed] [Google Scholar]
  3. Campbell T. J. Cellular electrophysiological effects of D- and DL-sotalol in guinea-pig sinoatrial node, atrium and ventricle and human atrium: differential tissue sensitivity. Br J Pharmacol. 1987 Mar;90(3):593–599. doi: 10.1111/j.1476-5381.1987.tb11210.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell T. J. Importance of physico-chemical properties in determining the kinetics of the effects of Class I antiarrhythmic drugs on maximum rate of depolarization in guinea-pig ventricle. Br J Pharmacol. 1983 Sep;80(1):33–40. doi: 10.1111/j.1476-5381.1983.tb11046.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Campbell T. J. Kinetics of onset of rate-dependent effects of Class I antiarrhythmic drugs are important in determining their effects on refractoriness in guinea-pig ventricle, and provide a theoretical basis for their subclassification. Cardiovasc Res. 1983 Jun;17(6):344–352. doi: 10.1093/cvr/17.6.344. [DOI] [PubMed] [Google Scholar]
  6. Campbell T. J. Resting and rate-dependent depression of maximum rate of depolarisation (Vmax) in guinea pig ventricular action potentials by mexiletine, disopyramide, and encainide. J Cardiovasc Pharmacol. 1983 Mar-Apr;5(2):291–296. doi: 10.1097/00005344-198303000-00021. [DOI] [PubMed] [Google Scholar]
  7. Carey E. L., Jr, Duff H. J., Roden D. M., Primm R. K., Wilkinson G. R., Wang T., Oates J. A., Woosley R. L. Encainide and its metabolites. Comparative effects in man on ventricular arrhythmia and electrocardiographic intervals. J Clin Invest. 1984 Feb;73(2):539–547. doi: 10.1172/JCI111241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Caron J. F., Libersa C. C., Kher A. R., Kacet S., Wanszelbaum H., Dupuis B. A., Poirier J. M., Lekieffre J. P. Comparative study of encainide and disopyramide in chronic ventricular arrhythmias: a double-blind placebo-controlled crossover study. J Am Coll Cardiol. 1985 Jun;5(6):1457–1463. doi: 10.1016/s0735-1097(85)80363-6. [DOI] [PubMed] [Google Scholar]
  9. Courtney K. R. Fast frequency-dependent block of action potential upstroke in rabbit atrium by small local anesthetics. Life Sci. 1979 Apr 23;24(17):1581–1588. doi: 10.1016/0024-3205(79)90019-5. [DOI] [PubMed] [Google Scholar]
  10. Courtney K. R. Quantitative structure/activity relations based on use-dependent block and repriming kinetics in myocardium. J Mol Cell Cardiol. 1987 Mar;19(3):319–330. doi: 10.1016/s0022-2828(87)80599-0. [DOI] [PubMed] [Google Scholar]
  11. Davy J. M., Dorian P., Kantelip J. P., Harrison D. C., Kates R. E. Qualitative and quantitative comparison of the cardiac effects of encainide and its three major metabolites in the dog. J Pharmacol Exp Ther. 1986 Jun;237(3):907–911. [PubMed] [Google Scholar]
  12. DiBianco R., Fletcher R. D., Cohen A. I., Gottdiener J. S., Singh S. N., Katz R. J., Bates H. R., Sauerbrunn B. Treatment of frequent ventricular arrhythmia with encainide: assessment using serial ambulatory electrocardiograms, intracardiac electrophysiologic studies, treadmill exercise tests, and radionuclide cineangiographic studies. Circulation. 1982 Jun;65(6):1134–1147. doi: 10.1161/01.cir.65.6.1134. [DOI] [PubMed] [Google Scholar]
  13. Dresel P. E. Effect of encainide and its two major metabolites on cardiac conduction. J Pharmacol Exp Ther. 1984 Jan;228(1):180–186. [PubMed] [Google Scholar]
  14. Elharrar V., Zipes D. P. Effects of encainide and metabolites (MJ14030 and MJ9444) on canine cardiac Purkinje and ventricular fibers. J Pharmacol Exp Ther. 1982 Feb;220(2):440–447. [PubMed] [Google Scholar]
  15. Gibson J. K., Somani P., Bassett A. L. Electrophysiologic effects of encainide (MJ 9067) on canine Purkinje fibres. Eur J Pharmacol. 1978 Nov 15;52(2):161–169. doi: 10.1016/0014-2999(78)90202-9. [DOI] [PubMed] [Google Scholar]
  16. Harrison D. C. Antiarrhythmic drug classification: new science and practical applications. Am J Cardiol. 1985 Jul 1;56(1):185–187. doi: 10.1016/0002-9149(85)90591-0. [DOI] [PubMed] [Google Scholar]
  17. Harrison D. C., Winkle R., Sami M., Mason J. Encainide: a new and potent antiarrhythmic agent. Am Heart J. 1980 Dec;100(6 Pt 2):1046–1054. doi: 10.1016/0002-8703(80)90212-4. [DOI] [PubMed] [Google Scholar]
  18. Kates R. E., Harrison D. C., Winkle R. A. Metabolite cumulation during long-term oral encainide administration. Clin Pharmacol Ther. 1982 Apr;31(4):427–432. doi: 10.1038/clpt.1982.55. [DOI] [PubMed] [Google Scholar]
  19. Man R. Y., Dresel P. E. A specific effect of lidocaine and tocainide on ventricular conduction of mid-range extrasystoles. J Cardiovasc Pharmacol. 1979 May-Jun;1(3):329–342. doi: 10.1097/00005344-197905000-00005. [DOI] [PubMed] [Google Scholar]
  20. Morganroth J., Pool P., Miller R., Hsu P. H., Lee I., Clark D. M. Dose-response range of encainide for benign and potentially lethal ventricular arrhythmias. Am J Cardiol. 1986 Apr 1;57(10):769–774. doi: 10.1016/0002-9149(86)90611-9. [DOI] [PubMed] [Google Scholar]
  21. Pallandi R. T., Campbell T. J. Selective depression of conduction of premature action potentials in canine Purkinje fibres by class Ib antiarrhythmic drugs: comparison with Ia and Ic drugs. Cardiovasc Res. 1988 Mar;22(3):171–178. doi: 10.1093/cvr/22.3.171. [DOI] [PubMed] [Google Scholar]
  22. Podrid P. J. Aggravation of ventricular arrhythmia. A drug-induced complication. Drugs. 1985;29 (Suppl 4):33–44. doi: 10.2165/00003495-198500294-00009. [DOI] [PubMed] [Google Scholar]
  23. Roden D. M., Hoffman B. F. Action potential prolongation and induction of abnormal automaticity by low quinidine concentrations in canine Purkinje fibers. Relationship to potassium and cycle length. Circ Res. 1985 Jun;56(6):857–867. doi: 10.1161/01.res.56.6.857. [DOI] [PubMed] [Google Scholar]
  24. Roden D. M., Reele S. B., Higgins S. B., Mayol R. F., Gammans R. E., Oates J. A., Woosley R. L. Total suppression of ventricular arrhythmias by encainide. Pharmacokinetic and electrocardiographic characteristics. N Engl J Med. 1980 Apr 17;302(16):877–882. doi: 10.1056/NEJM198004173021601. [DOI] [PubMed] [Google Scholar]
  25. Sada H., Ban T. Time-independent effects on cardiac action potential upstroke velocity (resting block) and lipid solubility of beta adrenergic blockers. Experientia. 1981 Feb 15;37(2):171–172. doi: 10.1007/BF01963214. [DOI] [PubMed] [Google Scholar]
  26. Walton M., Fozzard H. A. The relation of Vmax to INa, GNa, and h infinity in a model of the cardiac Purkinje fiber. Biophys J. 1979 Mar;25(3):407–420. doi: 10.1016/S0006-3495(79)85312-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Winkle R. A., Mason J. W., Griffin J. C., Ross D. Malignant ventricular tachyarrhythmias associated with the use of encainide. Am Heart J. 1981 Nov;102(5):857–864. doi: 10.1016/0002-8703(81)90036-3. [DOI] [PubMed] [Google Scholar]
  28. Zipes D. P. Proarrhythmic events. Am J Cardiol. 1988 Jan 15;61(2):70A–76A. doi: 10.1016/0002-9149(88)90743-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES