Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Jun;97(2):603–613. doi: 10.1111/j.1476-5381.1989.tb11992.x

Inhibition of histamine-stimulated inositol phospholipid hydrolysis by agents which increase cyclic AMP levels in bovine tracheal smooth muscle.

I P Hall 1, J Donaldson 1, S J Hill 1
PMCID: PMC1854535  PMID: 2547479

Abstract

1. The effect on histamine-stimulated [3H]-inositol phosphate accumulation of a range of agents which increase the accumulation, or mimic the actions, of cyclic AMP has been investigated in bovine tracheal smooth muscle. 2. Salbutamol (1 microM), forskolin (1 microM) and vasoactive intestinal peptide (VIP, 1 microM) inhibited the inositol phosphate response to 0.1 mM histamine and increased the accumulation of [3H]-cyclic AMP in [3H]-adenine-labelled slices of bovine tracheal smooth muscle. The effect on inositol phospholipid hydrolysis was mimicked by the membrane permeant analogues of cyclic AMP, dibutrylcyclic AMP (1 mM) and 8-bromo-cyclic AMP (1 mM). 3. In contrast to salbutamol, which was equally effective at producing the two effects, forskolin produced large increases in [3H]-cyclic AMP accumulation (EC50 = 1.2 microM) at much higher concentrations than those required for inhibition of histamine-stimulated [3H]-inositol phosphate accumulation (EC50 = 0.09 microM). However, significant increases in [3H]-cyclic AMP accumulation, of similar magnitude to those obtained with salbutamol and VIP, were observed over the concentration range appropriate for inhibition of the inositol phosphate response to histamine. 4. In the presence of histamine (0.1 mM), isobutylmethylxanthine (IBMX, 1 mM) and rolipram (0.1 mM) both significantly (P less than 0.05) elevated tissue [3H]-cyclic AMP levels. IBMX, rolipram and (to a lesser extent) SKF 94120 significantly (P less than 0.05) reduced histamine-stimulated [3H]-inositol phosphate accumulation by 81%, 68% and 20%, respectively. M&B 22948 was without a significant effect on either [3H]-cyclic AMP or histamine-induced [3H]-inositol phosphate accumulation. 5. Both rolipram and forskolin reduced the increase in incorporation of [3H]-inositol into membrane phospholipids which followed stimulation with histamine. However, a significant inhibition of [3H]-inositol phosphate accumulation could be demonstrated under conditions in which there was no change in the level of [3H]-inositol incorporation.

Full text

PDF
603

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barovsky K., Pedone C., Brooker G. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells. Mol Pharmacol. 1984 Mar;25(2):256–260. [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem. 1987;56:159–193. doi: 10.1146/annurev.bi.56.070187.001111. [DOI] [PubMed] [Google Scholar]
  3. Dale M. M., Obianime W. Phorbol myristate acetate causes in guinea-pig lung parenchymal strip a maintained spasm which is relatively resistant to isoprenaline. FEBS Lett. 1985 Oct 7;190(1):6–10. doi: 10.1016/0014-5793(85)80415-4. [DOI] [PubMed] [Google Scholar]
  4. Daly J. W., Padgett W., Seamon K. B. Activation of cyclic AMP-generating systems in brain membranes and slices by the diterpene forskolin: augmentation of receptor-mediated responses. J Neurochem. 1982 Feb;38(2):532–544. doi: 10.1111/j.1471-4159.1982.tb08660.x. [DOI] [PubMed] [Google Scholar]
  5. Davis C. W. Assessment of selective inhibition of rat cerebral cortical calcium-independent and calcium-dependent phosphodiesterases in crude extracts using deoxycyclic AMP and potassium ions. Biochim Biophys Acta. 1984 Mar 1;797(3):354–362. doi: 10.1016/0304-4165(84)90257-5. [DOI] [PubMed] [Google Scholar]
  6. Della Bianca V., De Togni P., Grzeskowiak M., Vicentini L. M., Di Virgilio F. Cyclic AMP inhibition of phosphoinositide turnover in human neutrophils. Biochim Biophys Acta. 1986 May 29;886(3):441–447. doi: 10.1016/0167-4889(86)90180-1. [DOI] [PubMed] [Google Scholar]
  7. Donaldson J., Brown A. M., Hill S. J. Influence of rolipram on the cyclic 3',5'-adenosine monophosphate response to histamine and adenosine in slices of guinea-pig cerebral cortex. Biochem Pharmacol. 1988 Feb 15;37(4):715–723. doi: 10.1016/0006-2952(88)90146-3. [DOI] [PubMed] [Google Scholar]
  8. Donaldson J., Hill S. J., Brown A. M. Kinetic studies on the mechanism by which histamine H1 receptors potentiate cyclic AMP accumulation in guinea pig cerebral cortical slices. Mol Pharmacol. 1988 Jun;33(6):626–633. [PubMed] [Google Scholar]
  9. Frossard N., Landry Y., Pauli G., Ruckstuhl M. Effects of cyclic AMP- and cyclic GMP- phosphodiesterase inhibitors on immunological release of histamine and on lung contraction. Br J Pharmacol. 1981 Aug;73(4):933–938. doi: 10.1111/j.1476-5381.1981.tb08748.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujiwara T., Sumimoto K., Itoh T., Suzuki H., Kuriyama H. Relaxing actions of procaterol, a beta 2-adrenoceptor stimulant, on smooth muscle cells of the dog trachea. Br J Pharmacol. 1988 Jan;93(1):199–209. doi: 10.1111/j.1476-5381.1988.tb11422.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Green R. D., Stanberry L. R. Elevation of cyclic AMP in C-1300 murine neuroblastoma by adenosine and related compounds and the antagonism of this response by methylxanthines. Biochem Pharmacol. 1977 Jan 1;26(1):37–43. doi: 10.1016/0006-2952(77)90127-7. [DOI] [PubMed] [Google Scholar]
  12. Gristwood R. W., Eden R. J., Owen D. A., Taylor E. M. Pharmacological studies with SK&F 94120, a novel positive inotropic agent with vasodilator activity. J Pharm Pharmacol. 1986 Jun;38(6):452–459. doi: 10.1111/j.2042-7158.1986.tb04609.x. [DOI] [PubMed] [Google Scholar]
  13. Hall I. P., Hill S. J. Beta-adrenoceptor stimulation inhibits histamine-stimulated inositol phospholipid hydrolysis in bovine tracheal smooth muscle. Br J Pharmacol. 1988 Dec;95(4):1204–1212. doi: 10.1111/j.1476-5381.1988.tb11757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hashimoto T., Hirata M., Ito Y. A role for inositol 1,4,5-trisphosphate in the initiation of agonist-induced contractions of dog tracheal smooth muscle. Br J Pharmacol. 1985 Sep;86(1):191–199. doi: 10.1111/j.1476-5381.1985.tb09449.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hill S. J., Kendall D. A. Studies on the adenosine-receptor mediating the augmentation of histamine-induced inositol phospholipid hydrolysis in guinea-pig cerebral cortex. Br J Pharmacol. 1987 Jul;91(3):661–669. doi: 10.1111/j.1476-5381.1987.tb11260.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kotlikoff M. I., Murray R. K., Reynolds E. E. Histamine-induced calcium release and phorbol antagonism in cultured airway smooth muscle cells. Am J Physiol. 1987 Oct;253(4 Pt 1):C561–C566. doi: 10.1152/ajpcell.1987.253.4.C561. [DOI] [PubMed] [Google Scholar]
  17. Neylon C. B., Summers R. J. Inhibition by cAMP of the phosphoinositide response to alpha 1-adrenoceptor stimulation in rat kidney. Eur J Pharmacol. 1988 Apr 13;148(3):441–444. doi: 10.1016/0014-2999(88)90124-0. [DOI] [PubMed] [Google Scholar]
  18. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  19. Park S., Rasmussen H. Activation of tracheal smooth muscle contraction: synergism between Ca2+ and activators of protein kinase C. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8835–8839. doi: 10.1073/pnas.82.24.8835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Parsons W. J., Ramkumar V., Stiles G. L. Isobutylmethylxanthine stimulates adenylate cyclase by blocking the inhibitory regulatory protein, Gi. Mol Pharmacol. 1988 Jul;34(1):37–41. [PubMed] [Google Scholar]
  21. Puurunen J., Lohse M. J., Schwabe U. Interactions between intracellular cyclic AMP and agonist-induced inositol phospholipid breakdown in isolated gastric mucosal cells of the rat. Naunyn Schmiedebergs Arch Pharmacol. 1987 Nov;336(5):471–477. doi: 10.1007/BF00169301. [DOI] [PubMed] [Google Scholar]
  22. Rinard G. A., Jensen A., Puckett A. M. Hydrocortisone and isoproterenol effects on trachealis cAMP and relaxation. J Appl Physiol Respir Environ Exerc Physiol. 1983 Nov;55(5):1609–1613. doi: 10.1152/jappl.1983.55.5.1609. [DOI] [PubMed] [Google Scholar]
  23. Seamon K. B., Padgett W., Daly J. W. Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3363–3367. doi: 10.1073/pnas.78.6.3363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Silver P. J., Hamel L. T., Perrone M. H., Bentley R. G., Bushover C. R., Evans D. B. Differential pharmacologic sensitivity of cyclic nucleotide phosphodiesterase isozymes isolated from cardiac muscle, arterial and airway smooth muscle. Eur J Pharmacol. 1988 May 20;150(1-2):85–94. doi: 10.1016/0014-2999(88)90753-4. [DOI] [PubMed] [Google Scholar]
  25. Stanley C., Brown A. M., Hill S. J. Effect of isozyme-selective inhibitors of phosphodiesterase on histamine-stimulated cyclic AMP accumulation in guinea-pig hippocampus. J Neurochem. 1989 Mar;52(3):671–676. doi: 10.1111/j.1471-4159.1989.tb02507.x. [DOI] [PubMed] [Google Scholar]
  26. Takai Y., Kaibuchi K., Sano K., Nishizuka Y. Counteraction of calcium-activated, phospholipid-dependent protein kinase activation by adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate in platelets. J Biochem. 1982 Jan;91(1):403–406. doi: 10.1093/oxfordjournals.jbchem.a133700. [DOI] [PubMed] [Google Scholar]
  27. Takuwa Y., Takuwa N., Rasmussen H. Measurement of cytoplasmic free Ca2+ concentration in bovine tracheal smooth muscle using aequorin. Am J Physiol. 1987 Dec;253(6 Pt 1):C817–C827. doi: 10.1152/ajpcell.1987.253.6.C817. [DOI] [PubMed] [Google Scholar]
  28. Takuwa Y., Takuwa N., Rasmussen H. The effects of isoproterenol on intracellular calcium concentration. J Biol Chem. 1988 Jan 15;263(2):762–768. [PubMed] [Google Scholar]
  29. Torphy T. J., Burman M., Huang L. B., Horohonich S., Cieslinski L. B. Regulation of cAMP content and cAMP-dependent protein kinase activity in airway smooth muscle. Prog Clin Biol Res. 1987;245:263–275. [PubMed] [Google Scholar]
  30. Torphy T. J., Freese W. B., Rinard G. A., Brunton L. L., Mayer S. E. Cyclic nucleotide-dependent protein kinases in airway smooth muscle. J Biol Chem. 1982 Oct 10;257(19):11609–11616. [PubMed] [Google Scholar]
  31. Watson S. P., McConnell R. T., Lapetina E. G. The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J Biol Chem. 1984 Nov 10;259(21):13199–13203. [PubMed] [Google Scholar]
  32. Weishaar R. E., Burrows S. D., Kobylarz D. C., Quade M. M., Evans D. B. Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets. Isolation, characterization, and effects of various reference phosphodiesterase inhibitors and cardiotonic agents. Biochem Pharmacol. 1986 Mar 1;35(5):787–800. doi: 10.1016/0006-2952(86)90247-9. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES