Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Jun;97(2):499–505. doi: 10.1111/j.1476-5381.1989.tb11978.x

Identification of M1 muscarinic receptors in pulmonary sympathetic nerves in the guinea-pig by use of pirenzepine.

J Maclagan 1, A D Fryer 1, D Faulkner 1
PMCID: PMC1854539  PMID: 2758228

Abstract

1. The effect of pirenzepine, a muscarinic antagonist considered to be selective for M1 receptors, was studied on bronchoconstriction and bradycardia elicited by preganglionic stimulation of the parasympathetic vagal nerves and by i.v. injections of acetylcholine (ACh) in anaesthetized guinea-pigs. 2. Pirenzepine was equipotent in the heart and lung as an antagonist of the effects of i.v. ACh at postjunctional muscarinic receptors. Doses of pirenzepine in excess of 1 mumol kg-1 abolished all muscarinic responses consistent with non-selective blockade of M3 receptors on airway smooth muscle and M2 receptors on atrial cells. 3. In the lung, low doses of pirenzepine (1-100 nmol kg-1) increased vagally-induced bronchoconstriction despite concurrent partial blockade of the postjunctional receptors. This suggests blockade of neuronal muscarinic receptors. 4. Propranolol (1 mg kg-1) increased control bronchoconstrictor responses elicited by ACh and vagal stimulation but did not alter the potency of pirenzepine for postjunctional receptors in heart or lung. However, pirenzepine-induced enhancement of vagally-induced bronchoconstriction was abolished by propranolol, suggesting that pirenzepine may be an antagonist for muscarinic receptors located in the sympathetic nerves innervating airway smooth muscle. 5. These results confirm that bronchoconstrictor stimuli indirectly initiate activation of an opposing sympathetic reflex in the guinea-pig lung. This response is facilitated by muscarinic receptors located in the sympathetic nervous pathway. 6. The high potency of pirenzepine for the neuronal receptors in the sympathetic nerves suggests that these are M1 receptors. In contrast, the parasympathetic nerves innervating airway smooth muscle in this species contain M2 receptors which inhibit neurotransmission.

Full text

PDF
499

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashe J. H., Yarosh C. A. Differential and selective antagonism of the slow-inhibitory postsynaptic potential and slow-excitatory postsynaptic potential by gallamine and pirenzepine in the superior cervical ganglion of the rabbit. Neuropharmacology. 1984 Nov;23(11):1321–1329. doi: 10.1016/0028-3908(84)90053-4. [DOI] [PubMed] [Google Scholar]
  2. Barlow R. B., Franks F. M., Pearson J. D. A comparison of the affinities of antagonists for acetylcholine receptors in the ileum, bronchial muscle and iris of the guinea-pig. Br J Pharmacol. 1972 Oct;46(2):300–312. doi: 10.1111/j.1476-5381.1972.tb06875.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaber L. C., Fryer A. D., Maclagan J. Neuronal muscarinic receptors attenuate vagally-induced contraction of feline bronchial smooth muscle. Br J Pharmacol. 1985 Nov;86(3):723–728. doi: 10.1111/j.1476-5381.1985.tb08951.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bloom J. W., Yamamura H. I., Baumgartener C., Halonen M. A muscarinic receptor with high affinity for pirenzepine mediates vagally induced bronchoconstriction. Eur J Pharmacol. 1987 Jan 6;133(1):21–27. doi: 10.1016/0014-2999(87)90201-9. [DOI] [PubMed] [Google Scholar]
  5. Brown D. A., Fatherazi S., Garthwaite J., White R. D. Muscarinic receptors in rat sympathetic ganglia. Br J Pharmacol. 1980 Dec;70(4):577–592. doi: 10.1111/j.1476-5381.1980.tb09777.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown D. M-currents: an update. Trends Neurosci. 1988 Jul;11(7):294–299. doi: 10.1016/0166-2236(88)90089-6. [DOI] [PubMed] [Google Scholar]
  7. Egan T. M., North R. A. Acetylcholine hyperpolarizes central neurones by acting on an M2 muscarinic receptor. 1986 Jan 30-Feb 5Nature. 319(6052):405–407. doi: 10.1038/319405a0. [DOI] [PubMed] [Google Scholar]
  8. Eglen R. M., Whiting R. L. Muscarinic receptor subtypes: a critique of the current classification and a proposal for a working nomenclature. J Auton Pharmacol. 1986 Dec;6(4):323–346. doi: 10.1111/j.1474-8673.1986.tb00661.x. [DOI] [PubMed] [Google Scholar]
  9. Faulkner D., Fryer A. D., Maclagan J. Postganglionic muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol. 1986 May;88(1):181–187. doi: 10.1111/j.1476-5381.1986.tb09485.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fryer A. D., Maclagan J. Ipratropium bromide potentiates bronchoconstriction induced by vagal nerve stimulation in the guinea-pig. Eur J Pharmacol. 1987 Jul 9;139(2):187–191. doi: 10.1016/0014-2999(87)90251-2. [DOI] [PubMed] [Google Scholar]
  11. Fryer A. D., Maclagan J. Muscarinic inhibitory receptors in pulmonary parasympathetic nerves in the guinea-pig. Br J Pharmacol. 1984 Dec;83(4):973–978. doi: 10.1111/j.1476-5381.1984.tb16539.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fryer A. D., Maclagan J. Pancuronium and gallamine are antagonists for pre- and post-junctional muscarinic receptors in the guinea-pig lung. Naunyn Schmiedebergs Arch Pharmacol. 1987 Apr;335(4):367–371. doi: 10.1007/BF00165549. [DOI] [PubMed] [Google Scholar]
  13. Hammer R. Subclasses of muscarinic receptors and pirenzepine. Further experimental evidence. Scand J Gastroenterol Suppl. 1982;72:59–67. [PubMed] [Google Scholar]
  14. Ito Y., Yoshitomi T. Autoregulation of acetylcholine release from vagus nerve terminals through activation of muscarinic receptors in the dog trachea. Br J Pharmacol. 1988 Mar;93(3):636–646. doi: 10.1111/j.1476-5381.1988.tb10321.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maclagan J., Faulkner D. Effect of pirenzepine and gallamine on cardiac and pulmonary muscarinic receptors in the rabbit. Br J Pharmacol. 1989 Jun;97(2):506–512. doi: 10.1111/j.1476-5381.1989.tb11979.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maclagan J., Ney U. M. Investigation of the mechanism of propranolol-induced bronchoconstriction. Br J Pharmacol. 1979 Jul;66(3):409–418. doi: 10.1111/j.1476-5381.1979.tb10846.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Newberry N. R., Priestley T., Woodruff G. N. Pharmacological distinction between two muscarinic responses on the isolated superior cervical ganglion of the rat. Eur J Pharmacol. 1985 Oct 8;116(1-2):191–192. doi: 10.1016/0014-2999(85)90204-3. [DOI] [PubMed] [Google Scholar]
  18. Partanen M., Laitinen A., Hervonen A., Toivanen M., Laitinen L. A. Catecholamine- and acetylcholinesterase-containing nerves in human lower respiratory tract. Histochemistry. 1982;76(2):175–188. doi: 10.1007/BF00501920. [DOI] [PubMed] [Google Scholar]
  19. RIKER W. F., Jr, WESCOE W. C. The pharmacology of Flaxedil, with observations on certain analogs. Ann N Y Acad Sci. 1951 Oct;54(3):373–394. doi: 10.1111/j.1749-6632.1951.tb39932.x. [DOI] [PubMed] [Google Scholar]
  20. Rhoden K. J., Meldrum L. A., Barnes P. J. Inhibition of cholinergic neurotransmission in human airways by beta 2-adrenoceptors. J Appl Physiol (1985) 1988 Aug;65(2):700–705. doi: 10.1152/jappl.1988.65.2.700. [DOI] [PubMed] [Google Scholar]
  21. Vermeire P. A., Vanhoutte P. M. Inhibitory effects of catecholamine in isolated canine bronchial smooth muscle. J Appl Physiol Respir Environ Exerc Physiol. 1979 Apr;46(4):787–791. doi: 10.1152/jappl.1979.46.4.787. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES