Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Jun;97(2):353–360. doi: 10.1111/j.1476-5381.1989.tb11961.x

What confers specificity on glycine for its receptor site?

N Tokutomi 1, M Kaneda 1, N Akaike 1
PMCID: PMC1854542  PMID: 2547472

Abstract

1. The structural requirements for activation of the glycine receptor were studied in isolated ventromedial hypothalamic neurones of rats by use of a 'concentration-clamp' technique under single-electrode voltage-clamp conditions. 2. alpha-Amino acids (L-alpha-alanine, and D-alpha-alanine, and L-serine), and glycine-methylester, glycine-ethylester and beta-amino acids (beta-alanine and taurine) produced a transient inward Cl- current, which was similar to that induced by glycine. 3. The responses to individual alpha- and beta-amino acids were selectively antagonized by strychnine, but were not affected by bicuculline, picrotoxin or the taurine antagonist, TAG (6-aminomethyl-3-methyl-4H,1,2,4-benzothiadiazine-1,1-dioxide hydrochloride), suggesting that alpha- and beta-amino acids activate the same glycine receptor. 4. beta-Amino acids were slightly more potent than the alpha-amino acids in causing cross-desensitization of the glycine response. 5. From the results of the structure-activity analysis of the optical isomers of alpha-alanine, serine and cysteine, a tentative structure of the glycine receptor is proposed.

Full text

PDF
353

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike N., Hattori K., Oomura Y., Carpenter D. O. Bicuculline and picrotoxin block gamma-aminobutyric acid-gated Cl- conductance by different mechanisms. Experientia. 1985 Jan 15;41(1):70–71. doi: 10.1007/BF02005880. [DOI] [PubMed] [Google Scholar]
  2. Akaike N., Inoue M., Krishtal O. A. 'Concentration-clamp' study of gamma-aminobutyric-acid-induced chloride current kinetics in frog sensory neurones. J Physiol. 1986 Oct;379:171–185. doi: 10.1113/jphysiol.1986.sp016246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bristow D. R., Bowery N. G., Woodruff G. N. Light microscopic autoradiographic localisation of [3H]glycine and [3H]strychnine binding sites in rat brain. Eur J Pharmacol. 1986 Jul 31;126(3):303–307. doi: 10.1016/0014-2999(86)90062-2. [DOI] [PubMed] [Google Scholar]
  4. Constanti A. The "mixed" effect of picrotoxin on the GABA dose/conductance relation recorded from lobster muscle. Neuropharmacology. 1978 Mar;17(3):159–167. doi: 10.1016/0028-3908(78)90095-3. [DOI] [PubMed] [Google Scholar]
  5. Curtis D. R., Duggan A. W., Felix D., Johnston G. A., McLennan H. Antagonism between bicuculline and GABA in the cat brain. Brain Res. 1971 Oct 8;33(1):57–73. doi: 10.1016/0006-8993(71)90305-2. [DOI] [PubMed] [Google Scholar]
  6. Curtis D. R., Hösli L., Johnston G. A. A pharmacological study of the depression of spinal neurones by glycine and related amino acids. Exp Brain Res. 1968;6(1):1–18. doi: 10.1007/BF00235443. [DOI] [PubMed] [Google Scholar]
  7. DeFeudis F. V. Glycine-receptors in the vertebrate central nervous system. Acta Physiol Lat Am. 1977;27(4):131–145. [PubMed] [Google Scholar]
  8. Graham D., Pfeiffer F., Simler R., Betz H. Purification and characterization of the glycine receptor of pig spinal cord. Biochemistry. 1985 Feb 12;24(4):990–994. doi: 10.1021/bi00325a027. [DOI] [PubMed] [Google Scholar]
  9. Hattori K., Akaike N., Oomura Y., Kuraoka S. Internal perfusion studies demonstrating GABA-induced chloride responses in frog primary afferent neurons. Am J Physiol. 1984 Mar;246(3 Pt 1):C259–C265. doi: 10.1152/ajpcell.1984.246.3.C259. [DOI] [PubMed] [Google Scholar]
  10. Ishizuka S., Hattori K., Akaike N. Separation of ionic currents in the somatic membrane of frog sensory neurons. J Membr Biol. 1984;78(1):19–28. doi: 10.1007/BF01872528. [DOI] [PubMed] [Google Scholar]
  11. Johnson J. W., Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987 Feb 5;325(6104):529–531. doi: 10.1038/325529a0. [DOI] [PubMed] [Google Scholar]
  12. Johnston G. A., Iversen L. L. Glycine uptake in rat central nervous system slices and homogenates: evidence for different uptake systems in spinal cord and cerebral cortex. J Neurochem. 1971 Oct;18(10):1951–1961. doi: 10.1111/j.1471-4159.1971.tb09601.x. [DOI] [PubMed] [Google Scholar]
  13. Johnston G. A., Krogsgaard-Larsen P., Stephanson A. L., Twitchin B. Inhibition of the uptake of GABA and related amino acids in rat brain slices by the optical isomers of nipecotic acid. J Neurochem. 1976 May;26(5):1029–1032. doi: 10.1111/j.1471-4159.1976.tb06488.x. [DOI] [PubMed] [Google Scholar]
  14. Kaneda M., Nakamura H., Akaike N. Mechanical and enzymatic isolation of mammalian CNS neurons. Neurosci Res. 1988 Apr;5(4):299–315. doi: 10.1016/0168-0102(88)90032-6. [DOI] [PubMed] [Google Scholar]
  15. Kishimoto H., Simon J. R., Aprison M. H. Determination of the equilibrium dissociation constants and number of glycine binding sites in several areas of the rat central nervous system, using a sodium-independent system. J Neurochem. 1981 Oct;37(4):1015–1024. doi: 10.1111/j.1471-4159.1981.tb04489.x. [DOI] [PubMed] [Google Scholar]
  16. Krogsgaard-Larsen P., Johnston G. A., Curtis D. R., Game C. J., McCulloch R. M. Structure and biological activity of a series of conformationally restricted analogues of GABA. J Neurochem. 1975 Dec;25(6):803–809. doi: 10.1111/j.1471-4159.1975.tb04411.x. [DOI] [PubMed] [Google Scholar]
  17. Martin G. E., Bendesky R. J., Williams M. Further evidence for selective antagonism of taurine by 6-aminomethyl-3-methyl-4H-1,2,4-benzothiadiazine-1,1-dioxide. Brain Res. 1981 Dec 21;229(2):530–535. doi: 10.1016/0006-8993(81)91017-9. [DOI] [PubMed] [Google Scholar]
  18. Okamoto K., Kimura H., Sakai Y. Evidence for taurine as an inhibitory neurotransmitter in cerebellar stellate interneurons: selective antagonism by TAG (6-aminomethyl-3-methyl-4H,1,2,4-benzothiadiazine-1,1-dioxide). Brain Res. 1983 Apr 11;265(1):163–168. doi: 10.1016/0006-8993(83)91350-1. [DOI] [PubMed] [Google Scholar]
  19. Pycock C. J., Kerwin R. W. The status of glycine as a supraspinal neurotransmitter. Life Sci. 1981 Jun 15;28(24):2679–2686. doi: 10.1016/0024-3205(81)90168-5. [DOI] [PubMed] [Google Scholar]
  20. Wilkin G. P., Csillag A., Balázs R., Kingsbury A. E., Wilson J. E., Johnson A. L. Localization of high affinity [3H]glycine transport sites in the cerebellar cortex. Brain Res. 1981 Jul 6;216(1):11–33. doi: 10.1016/0006-8993(81)91275-0. [DOI] [PubMed] [Google Scholar]
  21. Yakushiji T., Tokutomi N., Akaike N., Carpenter D. O. Antagonists of GABA responses, studied using internally perfused frog dorsal root ganglion neurons. Neuroscience. 1987 Sep;22(3):1123–1133. doi: 10.1016/0306-4522(87)92987-3. [DOI] [PubMed] [Google Scholar]
  22. Yarbrough G. G., Singh D. K., Taylor D. A. Neuropharmacological characterization of a taurine antagonist. J Pharmacol Exp Ther. 1981 Dec;219(3):604–613. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES