Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Jun;97(2):443–450. doi: 10.1111/j.1476-5381.1989.tb11971.x

Interaction of palmitoyl carnitine with calcium antagonists in myocytes.

L Patmore 1, G P Duncan 1, M Spedding 1
PMCID: PMC1854543  PMID: 2474346

Abstract

1. Beating of aggregates of embryonic chick myocytes, in primary culture, was quantified by use of a motion-detector and video-recorder technique. Interactions of palmitoyl carnitine, a putative endogenous ligand at Ca2+ channels, with calcium antagonists were investigated. 2. Bay K 8644 (1-100 nM) and palmitoyl carnitine (0.2-30 microM) increased edge movement of the aggregates; beats fused so that there was an increase in baseline 'tone'. The concentrations required to produce a 50% increase in edge movement were 2.5 nM for Bay K 8644 and 2 microM for palmitoyl carnitine. Higher concentrations (20-30 microM) of palmitoyl carnitine caused tachycardia of abrupt onset but resulted in cessation of beating. The effects of palmitoyl carnitine were not stereo-selective in that the (+)- and (-)-isomers were equieffective. Lysophosphatidyl choline (LPC) had no effect in concentrations up to 10 microM but higher concentrations caused tachycardia followed by cessation of beating. High concentrations of both palmitoyl carnitine and LPC (100 microM) caused break-up of the aggregates, presumably as a result of detergent effects. 3. Palmitoyl carnitine (1-100 microM) reversed the inhibitory effects of nisoldipine (0.3 microM), diltiazem (10 microM) and verapamil (1 microM). Ouabain was ineffective in reversing the effects of nisoldipine, differentiating the effects of palmitoyl carnitine from those of Na+/K+ ATPase inhibition. In contrast, palmitoyl carnitine did not reverse the inhibitory effects of pimozide (2 microM) or lidoflazine (7 microM); palmitoyl carnitine showed a similar profile to Bay K 8644 in this respect.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
443

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Cohen D. W., Gupte S., Johnson J. D., Wallick E. T., Wang T., Schwartz A. In vitro effects of palmitylcarnitine on cardiac plasma membrane Na,K-ATPase, and sarcoplasmic reticulum Ca2+-ATPase and Ca2+ transport. J Biol Chem. 1979 Dec 25;254(24):12404–12410. [PubMed] [Google Scholar]
  2. Allen D. G., Orchard C. H. Myocardial contractile function during ischemia and hypoxia. Circ Res. 1987 Feb;60(2):153–168. doi: 10.1161/01.res.60.2.153. [DOI] [PubMed] [Google Scholar]
  3. Barry W. H., Peeters G. A., Rasmussen C. A., Jr, Cunningham M. J. Role of changes in [Ca2+]i in energy deprivation contracture. Circ Res. 1987 Nov;61(5):726–734. doi: 10.1161/01.res.61.5.726. [DOI] [PubMed] [Google Scholar]
  4. Boddeke H. W., Wilffert B., Heynis J. B., van Zwieten P. A. Investigation of the mechanism of negative inotropic activity of some calcium antagonists. J Cardiovasc Pharmacol. 1988 Mar;11(3):321–325. doi: 10.1097/00005344-198803000-00009. [DOI] [PubMed] [Google Scholar]
  5. Clarkson C. W., Ten Eick R. E. On the mechanism of lysophosphatidylcholine-induced depolarization of cat ventricular myocardium. Circ Res. 1983 May;52(5):543–556. doi: 10.1161/01.res.52.5.543. [DOI] [PubMed] [Google Scholar]
  6. Clusin W. T., Hamilton W. E., Nelson D. V. The mechanical activity of chick embryonic myocardial cell aggregates. J Physiol. 1981 Nov;320:149–174. doi: 10.1113/jphysiol.1981.sp013941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Corr P. B., Gross R. W., Sobel B. E. Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res. 1984 Aug;55(2):135–154. doi: 10.1161/01.res.55.2.135. [DOI] [PubMed] [Google Scholar]
  8. Corr P. B., Snyder D. W., Cain M. E., Crafford W. A., Jr, Gross R. W., Sobel B. E. Electrophysiological effects of amphiphiles on canine purkinje fibers. Implications for dysrhythmia secondary to ischemia. Circ Res. 1981 Aug;49(2):354–363. doi: 10.1161/01.res.49.2.354. [DOI] [PubMed] [Google Scholar]
  9. Corr P. B., Snyder D. W., Lee B. I., Gross R. W., Keim C. R., Sobel B. E. Pathophysiological concentrations of lysophosphatides and the slow response. Am J Physiol. 1982 Aug;243(2):H187–H195. doi: 10.1152/ajpheart.1982.243.2.H187. [DOI] [PubMed] [Google Scholar]
  10. Dillon J. S., Nayler W. G. [3H]-verapamil binding to rat cardiac sarcolemmal membrane fragments; an effect of ischaemia. Br J Pharmacol. 1987 Jan;90(1):99–109. doi: 10.1111/j.1476-5381.1987.tb16829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Galizzi J. P., Fosset M., Lazdunski M. Characterization of the Ca2+ coordination site regulating binding of Ca2+ channel inhibitors d-cis-diltiazem, (+/-)bepridil and (-)desmethoxyverapamil to their receptor site in skeletal muscle transverse tubule membranes. Biochem Biophys Res Commun. 1985 Oct 15;132(1):49–55. doi: 10.1016/0006-291x(85)90986-6. [DOI] [PubMed] [Google Scholar]
  12. Glossmann H., Ferry D. R., Goll A., Striessnig J., Zernig G. Calcium channels and calcium channel drugs: recent biochemical and biophysical findings. Arzneimittelforschung. 1985;35(12A):1917–1935. [PubMed] [Google Scholar]
  13. Grima M., Schwartz J., Spach M. O., Velly J. Anti-anginal arylalkylamines and sodium channels: [3H]-batrachotoxinin-A 20-alpha-benzoate and [3H]-tetracaine binding. Br J Pharmacol. 1986 Dec;89(4):641–646. doi: 10.1111/j.1476-5381.1986.tb11168.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gross R. W., Drisdel R. C., Sobel B. E. Rabbit myocardial lysophospholipase-transacylase. Purification, characterization, and inhibition by endogenous cardiac amphiphiles. J Biol Chem. 1983 Dec 25;258(24):15165–15172. [PubMed] [Google Scholar]
  15. Gross R. W., Sobel B. E. Rabbit myocardial cytosolic lysophospholipase. Purification, characterization, and competitive inhibition by L-palmitoyl carnitine. J Biol Chem. 1983 Apr 25;258(8):5221–5226. [PubMed] [Google Scholar]
  16. Holz G. G., 4th, Rane S. G., Dunlap K. GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels. Nature. 1986 Feb 20;319(6055):670–672. doi: 10.1038/319670a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Idell-Wenger J. A., Grotyohann L. W., Neely J. R. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem. 1978 Jun 25;253(12):4310–4318. [PubMed] [Google Scholar]
  18. Kiyosue T., Arita M. Effects of lysophosphatidylcholine on resting potassium conductance of isolated guinea pig ventricular cells. Pflugers Arch. 1986 Mar;406(3):296–302. doi: 10.1007/BF00640917. [DOI] [PubMed] [Google Scholar]
  19. Knabb M. T., Saffitz J. E., Corr P. B., Sobel B. E. The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes. Circ Res. 1986 Feb;58(2):230–240. doi: 10.1161/01.res.58.2.230. [DOI] [PubMed] [Google Scholar]
  20. Liedtke A. J., Nellis S., Neely J. R. Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine. Circ Res. 1978 Oct;43(4):652–661. doi: 10.1161/01.res.43.4.652. [DOI] [PubMed] [Google Scholar]
  21. Matucci R., Bennardini F., Sciammarella M. L., Baccaro C., Stendardi I., Franconi F., Giotti A. [3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart. Biochem Pharmacol. 1987 Apr 1;36(7):1059–1062. doi: 10.1016/0006-2952(87)90414-x. [DOI] [PubMed] [Google Scholar]
  22. Mir A. K., Spedding M. Calcium antagonist properties of diclofurime isomers. II. Molecular aspects: allosteric interactions with dihydropyridine recognition sites. J Cardiovasc Pharmacol. 1987 Apr;9(4):469–477. doi: 10.1097/00005344-198704000-00012. [DOI] [PubMed] [Google Scholar]
  23. Neely J. R., Feuvray D. Metabolic products and myocardial ischemia. Am J Pathol. 1981 Feb;102(2):282–291. [PMC free article] [PubMed] [Google Scholar]
  24. Patmore L., Duncan G. P. Effects of calcium channel antagonists and facilitators on beating of primary cultures of embryonic chick heart cells. Br J Pharmacol. 1988 Nov;95(3):771–776. doi: 10.1111/j.1476-5381.1988.tb11703.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Piper M. H., Sezer O., Schwartz P., Hütter J. F., Schweickhardt C., Spieckermann P. G. Acyl-carnitine effects on isolated cardiac mitochondria and erythrocytes. Basic Res Cardiol. 1984 Mar-Apr;79(2):186–198. doi: 10.1007/BF01908305. [DOI] [PubMed] [Google Scholar]
  26. Reuter H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J Physiol. 1967 Sep;192(2):479–492. doi: 10.1113/jphysiol.1967.sp008310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Riccioppo Neto F. R., Sperelakis N. Effects of lidocaine, procaine, procainamide and quinidine on electrophysiological properties of cultured embryonic chick hearts. Br J Pharmacol. 1985 Dec;86(4):817–826. doi: 10.1111/j.1476-5381.1985.tb11103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Spedding M. Activators and inactivators of Ca++ channels: new perspectives. J Pharmacol. 1985 Oct-Dec;16(4):319–343. [PubMed] [Google Scholar]
  29. Spedding M., Berg C. Interactions between a "calcium channel agonist", Bay K 8644, and calcium antagonists differentiate calcium antagonist subgroups in K+-depolarized smooth muscle. Naunyn Schmiedebergs Arch Pharmacol. 1984 Nov;328(1):69–75. doi: 10.1007/BF00496109. [DOI] [PubMed] [Google Scholar]
  30. Spedding M. Changing surface charge with salicylate differentiates between subgroups of calcium-antagonists. Br J Pharmacol. 1984 Sep;83(1):211–220. doi: 10.1111/j.1476-5381.1984.tb10137.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Spedding M. Competitive interactions between Bay K 8644 and nifedipine in K+ depolarized smooth muscle: a passive role for Ca2+? Naunyn Schmiedebergs Arch Pharmacol. 1985 Feb;328(4):464–466. doi: 10.1007/BF00692917. [DOI] [PubMed] [Google Scholar]
  32. Spedding M., Mir A. K. Direct activation of Ca2+ channels by palmitoyl carnitine, a putative endogenous ligand. Br J Pharmacol. 1987 Oct;92(2):457–468. doi: 10.1111/j.1476-5381.1987.tb11343.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sperelakis N., Schneider J. A. A metabolic control mechanism for calcium ion influx that may protect the ventricular myocardial cell. Am J Cardiol. 1976 Jun;37(7):1079–1085. doi: 10.1016/0002-9149(76)90428-8. [DOI] [PubMed] [Google Scholar]
  34. Su C. M., Swamy V. C., Triggle D. J. Calcium channel activation in vascular smooth muscle by BAY K 8644. Can J Physiol Pharmacol. 1984 Nov;62(11):1401–1410. doi: 10.1139/y84-233. [DOI] [PubMed] [Google Scholar]
  35. Tsien R. W., Giles W., Greengard P. Cyclic AMP mediates the effects of adrenaline on cardiac purkinje fibres. Nat New Biol. 1972 Dec 6;240(101):181–183. doi: 10.1038/newbio240181a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES