Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Jun;97(2):303–312. doi: 10.1111/j.1476-5381.1989.tb11955.x

A comparison of bradykinin- and capsaicin-induced myocardial and coronary effects in isolated perfused heart of guinea-pig: involvement of substance P and calcitonin gene-related peptide release.

S Manzini 1, F Perretti 1, L De Benedetti 1, P Pradelles 1, C A Maggi 1, P Geppetti 1
PMCID: PMC1854545  PMID: 2474343

Abstract

1.Bradykinin and capsaicin were compared for their ability to elicit functional effects and to release sensory neuropeptides from guinea-pig isolated perfused hearts. 2. Both bradykinin (10 microM) and capsaicin (1 microM) produced a marked increase in coronary flow, a large positive chronotropic effect and a significant reduction in contractile strength. These actions were associated with a marked release of substance P-like immunoreactivity (SP-LI) and calcitonin gene-related-like immunoreactivity (CGRP-LI). The percentage of the tissue content of SP-LI and CGRP-LI released by each agent was similar, although bradykinin was less effective than capsaicin. The ratio of SP-LI/CGRP-LI released by both agents was similar to that present in cardiac tissue. 3. Neuropeptide release could be evoked only once with capsaicin but at least four times with bradykinin. Also, functional responses to capsaicin underwent desensitization. After either in vitro or systemic capsaicin pretreatment, the release of SP-LI and CGRP-LI by bradykinin was reduced and the positive chronotropic effect of bradykinin was significantly reduced, while the increase in coronary flow and negative inotropic responses remained unchanged. 4. Pretreatment with indomethacin (10 microM) strongly antagonized the release of SP-LI and CGRP-LI by bradykinin and reduced the increase in heart rate. 5. These findings suggest that activation by bradykinin (probably through indirect mechanisms) of capsaicin-sensitive sensory nerves in the heart, leads to a local release of sensory neuropeptides. These neuropeptides, in turn, could participate in determining the complex functional effects of this kinin on cardiac performance.

Full text

PDF
303

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beny J. L., Brunet P., Huggel H. Interaction of bradykinin and des-Arg9-bradykinin with isolated pig coronary arteries: mechanical and electrophysiological events. Regul Pept. 1987 Apr;17(4):181–190. doi: 10.1016/0167-0115(87)90061-9. [DOI] [PubMed] [Google Scholar]
  2. Bynke G., Håkanson R., Hörig J., Leander S. Bradykinin contracts the pupillary sphincter and evokes ocular inflammation through release of neuronal substance P. Eur J Pharmacol. 1983 Aug 5;91(4):469–475. doi: 10.1016/0014-2999(83)90172-3. [DOI] [PubMed] [Google Scholar]
  3. Franco-Cereceda A., Lundberg J. M. Calcitonin gene-related peptide (CGRP) and capsaicin-induced stimulation of heart contractile rate and force. Naunyn Schmiedebergs Arch Pharmacol. 1985 Nov;331(2-3):146–151. doi: 10.1007/BF00634231. [DOI] [PubMed] [Google Scholar]
  4. Geppetti P., Maggi C. A., Perretti F., Frilli S., Manzini S. Simultaneous release by bradykinin of substance P- and calcitonin gene-related peptide immunoreactivities from capsaicin-sensitive structures in guinea-pig heart. Br J Pharmacol. 1988 Jun;94(2):288–290. doi: 10.1111/j.1476-5381.1988.tb11528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Geppetti P., Maggi C. A., Zecchi-Orlandini S., Santicioli P., Meli A., Frilli S., Spillantini M. G., Amenta F. Substance P-like immunoreactivity in capsaicin-sensitive structures of the rat thymus. Regul Pept. 1987 Sep;18(5-6):321–329. doi: 10.1016/0167-0115(87)90189-3. [DOI] [PubMed] [Google Scholar]
  6. Goldberg M. R., Chapnick B. M., Joiner P. D., Hyman A. L., Kadowitz P. J. Influence of inhibitors of prostaglandin synthesis on venoconstrictor responses to bradykinin. J Pharmacol Exp Ther. 1976 Aug;198(2):357–365. [PubMed] [Google Scholar]
  7. Haass M., Skofitsch G. Cardiovascular effects of calcitonin gene-related peptide in the pithed rat: comparison with substance P. Life Sci. 1985 Dec 2;37(22):2085–2090. doi: 10.1016/0024-3205(85)90580-6. [DOI] [PubMed] [Google Scholar]
  8. Holman J. J., Craig R. K., Marshall I. Human alpha- and beta-CGRP and rat alpha-CGRP are coronary vasodilators in the rat. Peptides. 1986 Mar-Apr;7(2):231–235. doi: 10.1016/0196-9781(86)90218-4. [DOI] [PubMed] [Google Scholar]
  9. Hoover D. B. Effects of capsaicin on release of substance P-like immunoreactivity and physiological parameters in isolated perfused guinea-pig heart. Eur J Pharmacol. 1987 Sep 23;141(3):489–492. doi: 10.1016/0014-2999(87)90571-1. [DOI] [PubMed] [Google Scholar]
  10. Hougland M. W., Durkee K. H., Hougland A. E. Innervation of guinea pig heart by neurons sensitive to capsaicin. J Auton Nerv Syst. 1986 Mar;15(3):217–225. doi: 10.1016/0165-1838(86)90065-2. [DOI] [PubMed] [Google Scholar]
  11. Håkanson R., Beding B., Ekman R., Heilig M., Wahlestedt C., Sundler F. Multiple tachykinin pools in sensory nerve fibres in the rabbit iris. Neuroscience. 1987 Jun;21(3):943–950. doi: 10.1016/0306-4522(87)90049-2. [DOI] [PubMed] [Google Scholar]
  12. Johnson A. R., Erdös E. G. Release of histamine from mast cells by vasoactive peptides. Proc Soc Exp Biol Med. 1973 Apr;142(4):1252–1256. doi: 10.3181/00379727-142-37219. [DOI] [PubMed] [Google Scholar]
  13. Juan H., Lembeck F. Action of peptides and other algesic agents on paravascular pain receptors of the isolated perfused rabbit ear. Naunyn Schmiedebergs Arch Pharmacol. 1974;283(2):151–164. doi: 10.1007/BF00501142. [DOI] [PubMed] [Google Scholar]
  14. Kaufman M. P., Baker D. G., Coleridge H. M., Coleridge J. C. Stimulation by bradykinin of afferent vagal C-fibers with chemosensitive endings in the heart and aorta of the dog. Circ Res. 1980 Apr;46(4):476–484. doi: 10.1161/01.res.46.4.476. [DOI] [PubMed] [Google Scholar]
  15. Longhurst J. C., Dittman L. E. Hypoxia, bradykinin, and prostaglandins stimulate ischemically sensitive visceral afferents. Am J Physiol. 1987 Sep;253(3 Pt 2):H556–H567. doi: 10.1152/ajpheart.1987.253.3.H556. [DOI] [PubMed] [Google Scholar]
  16. Lundberg J. M., Franco-Cereceda A., Hua X., Hökfelt T., Fischer J. A. Co-existence of substance P and calcitonin gene-related peptide-like immunoreactivities in sensory nerves in relation to cardiovascular and bronchoconstrictor effects of capsaicin. Eur J Pharmacol. 1985 Feb 5;108(3):315–319. doi: 10.1016/0014-2999(85)90456-x. [DOI] [PubMed] [Google Scholar]
  17. Maggi C. A., Giuliani S., Conte B., Furio M., Santicioli P., Meli P., Gragnani L., Meli A. Prostanoids modulate reflex micturition by acting through capsaicin-sensitive afferents. Eur J Pharmacol. 1988 Jan 12;145(2):105–112. doi: 10.1016/0014-2999(88)90221-x. [DOI] [PubMed] [Google Scholar]
  18. Maggi C. A., Meli A., Santicioli P. Four motor effects of capsaicin on guinea-pig distal colon. Br J Pharmacol. 1987 Apr;90(4):651–660. doi: 10.1111/j.1476-5381.1987.tb11217.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maggi C. A., Meli A. The sensory-efferent function of capsaicin-sensitive sensory neurons. Gen Pharmacol. 1988;19(1):1–43. doi: 10.1016/0306-3623(88)90002-x. [DOI] [PubMed] [Google Scholar]
  20. Maggi C. A., Santicioli P., Geppetti P., Furio M., Frilli S., Conte B., Fanciullacci M., Giuliani S., Meli A. The contribution of capsaicin-sensitive innervation to activation of the spinal vesico-vesical reflex in rats: relationship between substance P levels in the urinary bladder and the sensory-efferent function of capsaicin-sensitive sensory neurons. Brain Res. 1987 Jul 7;415(1):1–13. doi: 10.1016/0006-8993(87)90263-0. [DOI] [PubMed] [Google Scholar]
  21. Mulderry P. K., Ghatei M. A., Rodrigo J., Allen J. M., Rosenfeld M. G., Polak J. M., Bloom S. R. Calcitonin gene-related peptide in cardiovascular tissues of the rat. Neuroscience. 1985 Mar;14(3):947–954. doi: 10.1016/0306-4522(85)90156-3. [DOI] [PubMed] [Google Scholar]
  22. Papka R. E., Furness J. B., Della N. G., Murphy R., Costa M. Time course of effect of capsaicin on ultrastructure and histochemistry of substance P-immunoreactive nerves associated with the cardiovascular system of the guinea-pig. Neuroscience. 1984 Aug;12(4):1277–1292. doi: 10.1016/0306-4522(84)90021-6. [DOI] [PubMed] [Google Scholar]
  23. Sigrist S., Franco-Cereceda A., Muff R., Henke H., Lundberg J. M., Fischer J. A. Specific receptor and cardiovascular effects of calcitonin gene-related peptide. Endocrinology. 1986 Jul;119(1):381–389. doi: 10.1210/endo-119-1-381. [DOI] [PubMed] [Google Scholar]
  24. Toda N. Actions of bradykinin on isolated cerebral and peripheral arteries. Am J Physiol. 1977 Mar;232(3):H267–H274. doi: 10.1152/ajpheart.1977.232.3.H267. [DOI] [PubMed] [Google Scholar]
  25. Uddman R., Edvinsson L., Ekblad E., Håkanson R., Sundler F. Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul Pept. 1986 Aug;15(1):1–23. doi: 10.1016/0167-0115(86)90071-6. [DOI] [PubMed] [Google Scholar]
  26. Ueda N., Muramatsu I., Fujiwara M. Capsaicin and bradykinin-induced substance P-ergic responses in the iris sphincter muscle of the rabbit. J Pharmacol Exp Ther. 1984 Aug;230(2):469–473. [PubMed] [Google Scholar]
  27. Warren J. B., Ritter J. M., Hickling N. E., Barrow S. E. Bradykinin-stimulated prostaglandin synthesis in conscious rabbits. Br J Pharmacol. 1987 Dec;92(4):895–900. doi: 10.1111/j.1476-5381.1987.tb11395.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yanagisawa M., Otsuka M., García-Arrarás J. E. E-type prostaglandins depolarize primary afferent neurons of the neonatal rat. Neurosci Lett. 1986 Aug 4;68(3):351–355. doi: 10.1016/0304-3940(86)90515-x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES