Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Jul;97(3):853–865. doi: 10.1111/j.1476-5381.1989.tb12025.x

Effect of endothelium on basal and on stimulated accumulation and efflux of cyclic GMP in rat isolated aorta.

V Schini 1, P Schoeffter 1, R C Miller 1
PMCID: PMC1854579  PMID: 2547488

Abstract

1. The aim of this study was to examine the possible role of the release of guanosine 3':5'-cyclic monophosphate (cyclic GMP) into the extracellular space in the regulation of rat aortic cyclic GMP content. 2. Rat aortic segments incubated in physiological solution released cyclic GMP into the medium in a time-dependent manner. This release was greatly enhanced when intact instead of tissues without endothelium were used. After 120 min of observation, a maximal 33 fold difference in extracellular cyclic GMP content was detected. 3. Treatment of rat aortic preparations with either a Ca2+-free solution or methylene blue, both conditions known to inhibit endothelium-derived relaxing factor (EDRF)-mediated responses, markedly reduced the extracellular accumulation of cyclic GMP from tissues with but not without endothelium. 4. Endothelium-dependent vasodilators such as acetylcholine (10 microM) and carbachol (10 microM) greatly increased tissue cyclic GMP content, in a time-dependent manner in rat aortic preparations with endothelium, but only slightly in tissues without. Maximal increases in intact tissues were obtained after about 1 min of agonist contact and amounted to about 35 and 15 fold respectively, thereafter tissue cyclic GMP content rapidly declined. Histamine (10 microM) elicited only minor effects on tissue cyclic GMP content of both intact preparations and those without endothelium. 5. Acetylcholine (10 microM), carbachol (10 microM) and histamine (10 microM) stimulated a time-dependent release of the cyclic nucleotide into the incubation medium from tissues with endothelium. After 120 min of observation, extracellular accumulation of cyclic GMP from intact tissues was increased by about 2.6, 6.6 and 1.7 fold respectively. Carbachol and histamine induced only minor effects on release from tissues without endothelium. 6. Sodium nitroprusside (0.3 and 10 microM), a direct activator of soluble guanylate cyclase, induced a concentration-dependent accumulation of cyclic GMP in tissues with and without endothelium that was associated with a concentration-dependent accumulation of cyclic GMP in the extracellular space. Peak tissue cyclic GMP content reached similar levels in preparations with and without endothelium, while extracellular cyclic GMP levels were about two times greater when experiments were performed with intact compared to endothelium-denuded tissues. 7. Atriopeptin II, an activator of particulate guanylate cyclase, increased tissue cyclic GMP content by about 8 and 18 fold respectively in tissues with and without endothelium.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
853

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold W. P., Mittal C. K., Katsuki S., Murad F. Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3203–3207. doi: 10.1073/pnas.74.8.3203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boxer L. A., Allen J. M., Baehner R. L. Diminished polymorphonuclear leukocyte adherence. Function dependent on release of cyclic AMP by endothelial cells after stimulation of beta-receptors by epinephrine. J Clin Invest. 1980 Aug;66(2):268–274. doi: 10.1172/JCI109853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brotherton A. F. Induction of prostacyclin biosynthesis is closely associated with increased guanosine 3',5'-cyclic monophosphate accumulation in cultured human endothelium. J Clin Invest. 1986 Nov;78(5):1253–1260. doi: 10.1172/JCI112709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brunton L. L., Mayer S. E. Extrusion of cyclic AMP from pigeon erythrocytes. J Biol Chem. 1979 Oct 10;254(19):9714–9720. [PubMed] [Google Scholar]
  5. Cailla H. L., Vannier C. J., Delaage M. A. Guanosine 3', 5'-cyclicmonophosphate assay at 10(-15)-mole level. Anal Biochem. 1976 Jan;70(1):195–202. doi: 10.1016/s0378-5173(83)90100-x. [DOI] [PubMed] [Google Scholar]
  6. Casals-Stenzel J., Weber K. H. Triazolodiazepines: dissociation of their Paf (platelet activating factor) antagonistic and CNS activity. Br J Pharmacol. 1987 Jan;90(1):139–146. doi: 10.1111/j.1476-5381.1987.tb16833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DAVOREN P. R., SUTHERLAND E. W. THE EFFECT OF L-EPINEPHRINE AND OTHER AGENTS ON THE SYNTHESIS AND RELEASE OF ADENOSINE 3',5'-PHOSPHATE BY WHOLE PIGEON ERYTHROCYTES. J Biol Chem. 1963 Sep;238:3009–3015. [PubMed] [Google Scholar]
  8. Diamantstein T., Ulmer A. The antagonistic action of cyclic GMP and cyclic AMP on proliferation of B and T lymphocytes. Immunology. 1975 Jan;28(1):113–119. [PMC free article] [PubMed] [Google Scholar]
  9. Diamond J., Chu E. B. Possible role for cyclic GMP in endothelium-dependent relaxation of rabbit aorta by acetylcholine. Comparison with nitroglycerin. Res Commun Chem Pathol Pharmacol. 1983 Sep;41(3):369–381. [PubMed] [Google Scholar]
  10. Doore B. J., Bashor M. M., Spitzer N., Mawe R. C., Saier M. H., Jr Regulation of adenosine 3' :5'-monophosphate efflux from rat glioma cells in culture*. J Biol Chem. 1975 Jun 10;250(11):4371–4372. [PubMed] [Google Scholar]
  11. Fiscus R. R., Rapoport R. M., Waldman S. A., Murad F. Atriopeptin II elevates cyclic GMP, activates cyclic GMP-dependent protein kinase and causes relaxation in rat thoracic aorta. Biochim Biophys Acta. 1985 Jul 30;846(1):179–184. doi: 10.1016/0167-4889(85)90124-7. [DOI] [PubMed] [Google Scholar]
  12. Furchgott R. F. The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol. 1984;24:175–197. doi: 10.1146/annurev.pa.24.040184.001135. [DOI] [PubMed] [Google Scholar]
  13. Förstermann U., Mülsch A., Böhme E., Busse R. Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ Res. 1986 Apr;58(4):531–538. doi: 10.1161/01.res.58.4.531. [DOI] [PubMed] [Google Scholar]
  14. Ganz P., Davies P. F., Leopold J. A., Gimbrone M. A., Jr, Alexander R. W. Short- and long-term interactions of endothelium and vascular smooth muscle in coculture: effects on cyclic GMP production. Proc Natl Acad Sci U S A. 1986 May;83(10):3552–3556. doi: 10.1073/pnas.83.10.3552. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldman S. J., Dickinson E. S., Slakey L. L. Effect of adenosine on synthesis and release of cyclic AMP by cultured vascular cells from swine. J Cyclic Nucleotide Protein Phosphor Res. 1983;9(1):69–78. [PubMed] [Google Scholar]
  16. Griffith T. M., Edwards D. H., Lewis M. J., Newby A. C., Henderson A. H. The nature of endothelium-derived vascular relaxant factor. Nature. 1984 Apr 12;308(5960):645–647. doi: 10.1038/308645a0. [DOI] [PubMed] [Google Scholar]
  17. Heasley L. E., Brunton L. L. Prostaglandin A1 metabolism and inhibition of cyclic AMP extrusion by avian erythrocytes. J Biol Chem. 1985 Sep 25;260(21):11514–11519. [PubMed] [Google Scholar]
  18. Holzmann S. Endothelium-induced relaxation by acetylcholine associated with larger rises in cyclic GMP in coronary arterial strips. J Cyclic Nucleotide Res. 1982;8(6):409–419. [PubMed] [Google Scholar]
  19. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ignarro L. J., Harbison R. G., Wood K. S., Kadowitz P. J. Activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor from intrapulmonary artery and vein: stimulation by acetylcholine, bradykinin and arachidonic acid. J Pharmacol Exp Ther. 1986 Jun;237(3):893–900. [PubMed] [Google Scholar]
  21. Katsuki S., Arnold W., Mittal C., Murad F. Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res. 1977 Feb;3(1):23–35. [PubMed] [Google Scholar]
  22. Katsuki S., Murad F. Regulation of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate levels and contractility in bovine tracheal smooth muscle. Mol Pharmacol. 1977 Mar;13(2):330–341. [PubMed] [Google Scholar]
  23. Keith R. A., Burkman A. M., Sokoloski T. D., Fertel R. H. Vascular tolerance to nitroglycerin and cyclic GMP generation in rat aortic smooth muscle. J Pharmacol Exp Ther. 1982 Jun;221(3):525–531. [PubMed] [Google Scholar]
  24. Kelly L. A., Butcher R. W. The effects of epinephrine and prostaglandin E-1 on cyclic adenosine 3':5'-monophosphate levels in WI-38 fibroblasts. J Biol Chem. 1974 May 25;249(10):3098–3102. [PubMed] [Google Scholar]
  25. Leitman D. C., Andresen J. W., Kuno T., Kamisaki Y., Chang J. K., Murad F. Identification of multiple binding sites for atrial natriuretic factor by affinity cross-linking in cultured endothelial cells. J Biol Chem. 1986 Sep 5;261(25):11650–11655. [PubMed] [Google Scholar]
  26. Leitman D. C., Murad F. Comparison of binding and cyclic GMP accumulation by atrial natriuretic peptides in endothelial cells. Biochim Biophys Acta. 1986 Jan 23;885(1):74–79. doi: 10.1016/0167-4889(86)90040-6. [DOI] [PubMed] [Google Scholar]
  27. Long C. J., Stone T. W. The release of endothelium-derived relaxant factor is calcium dependent. Blood Vessels. 1985;22(4):205–208. doi: 10.1159/000158602. [DOI] [PubMed] [Google Scholar]
  28. Lugnier C., Schoeffter P., Le Bec A., Strouthou E., Stoclet J. C. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem Pharmacol. 1986 May 15;35(10):1743–1751. doi: 10.1016/0006-2952(86)90333-3. [DOI] [PubMed] [Google Scholar]
  29. MacGregor R. R., Macarak E. J., Kefalides N. A. Comparative adherence of granulocytes to endothelial monolayers and nylon fiber. J Clin Invest. 1978 Mar;61(3):697–702. doi: 10.1172/JCI108981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Martin W., White D. G., Henderson A. H. Endothelium-derived relaxing factor and atriopeptin II elevate cyclic GMP levels in pig aortic endothelial cells. Br J Pharmacol. 1988 Jan;93(1):229–239. doi: 10.1111/j.1476-5381.1988.tb11426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Miller R. C., Mony M., Schini V., Schoeffter P., Stoclet J. C. Endothelial mediated inhibition of contraction and increase in cyclic GMP levels evoked by the alpha-adrenoceptor agonist B-HT 920 in rat isolated aorta. Br J Pharmacol. 1984 Dec;83(4):903–908. doi: 10.1111/j.1476-5381.1984.tb16530.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. O'Dea R. F., Gagnon C., Zatz M. Regulation of guanosine 3',5' cyclic monophosphate in the rat pineal and posterior pituitary glands. J Neurochem. 1978 Sep;31(3):733–738. doi: 10.1111/j.1471-4159.1978.tb07848.x. [DOI] [PubMed] [Google Scholar]
  33. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  34. Peach M. J., Loeb A. L., Singer H. A., Saye J. Endothelium-derived vascular relaxing factor. Hypertension. 1985 May-Jun;7(3 Pt 2):I94–100. doi: 10.1161/01.hyp.7.3_pt_2.i94. [DOI] [PubMed] [Google Scholar]
  35. Penit J., Jard S., Benda P. Probenecide sensitive 3'-5'-cyclic AMP secretion by isoproterenol stimulated glial cells in culture. FEBS Lett. 1974 Apr 15;41(1):156–160. doi: 10.1016/0014-5793(74)80977-4. [DOI] [PubMed] [Google Scholar]
  36. Pryzwansky K. B., Steiner A. L., Spitznagel J. K., Kapoor C. L. Compartmentalization of cyclic AMP during phagocytosis by human neutrophilic granulocytes. Science. 1981 Jan 23;211(4480):407–410. doi: 10.1126/science.6261328. [DOI] [PubMed] [Google Scholar]
  37. Rapoport R. M., Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983 Mar;52(3):352–357. doi: 10.1161/01.res.52.3.352. [DOI] [PubMed] [Google Scholar]
  38. Rapoport R. M., Waldman S. A., Schwartz K., Winquist R. J., Murad F. Effects of atrial natriuretic factor, sodium nitroprusside, and acetylcholine on cyclic GMP levels and relaxation in rat aorta. Eur J Pharmacol. 1985 Sep 24;115(2-3):219–229. doi: 10.1016/0014-2999(85)90694-6. [DOI] [PubMed] [Google Scholar]
  39. Rindler M. J., Bashor M. M., Spitzer N., Saier M. H., Jr Regulation of adenosine 3':5'-monophosphate efflux from animal cells. J Biol Chem. 1978 Aug 10;253(15):5431–5436. [PubMed] [Google Scholar]
  40. Rudolph S. A., Greengard P. Effects of catecholamines and prostaglandin E1 on cyclic AMP, cation fluxes, and protein phosphorylation in the frog erythrocyte. J Biol Chem. 1980 Sep 25;255(18):8534–8540. [PubMed] [Google Scholar]
  41. Schenk D. B., Johnson L. K., Schwartz K., Sista H., Scarborough R. M., Lewicki J. A. Distinct atrial natriuretic factor receptor sites on cultured bovine aortic smooth muscle and endothelial cells. Biochem Biophys Res Commun. 1985 Mar 15;127(2):433–442. doi: 10.1016/s0006-291x(85)80179-0. [DOI] [PubMed] [Google Scholar]
  42. Schini V., Grant N. J., Miller R. C., Takeda K. Morphological characterization of cultured bovine aortic endothelial cells and the effects of atriopeptin II and sodium nitroprusside on cellular and extracellular accumulation of cyclic GMP. Eur J Cell Biol. 1988 Oct;47(1):53–61. [PubMed] [Google Scholar]
  43. Schini V., Malta E., Miller R. C. Effect of endothelium and carbachol on alpha-adrenoceptor agonist stimulated uptake and efflux of 45Ca in rat isolated aorta. Naunyn Schmiedebergs Arch Pharmacol. 1987 Sep;336(3):287–294. doi: 10.1007/BF00172680. [DOI] [PubMed] [Google Scholar]
  44. Singer H. A., Peach M. J. Calcium- and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension. 1982 May-Jun;4(3 Pt 2):19–25. [PubMed] [Google Scholar]
  45. Spedding M., Schini V., Schoeffter P., Miller R. C. Calcium channel activation does not increase release of endothelial-derived relaxant factors (EDRF) in rat aorta although tonic release of EDRF may modulate calcium channel activity in smooth muscle. J Cardiovasc Pharmacol. 1986 Nov-Dec;8(6):1130–1137. doi: 10.1097/00005344-198611000-00006. [DOI] [PubMed] [Google Scholar]
  46. Tjörnhammar M. L., Lazaridis G., Bartfai T. Cyclic GMP efflux from liver slices. J Biol Chem. 1983 Jun 10;258(11):6882–6886. [PubMed] [Google Scholar]
  47. Tjörnhammar M. L., Lazaridis G., Bartfai T. Efflux of cyclic guanosine 3',5'-monophosphate from cerebellar slices stimulated by L-glutamate or high K+ or N-methyl-N'-nitro-N-nitrosoguanidine. Neurosci Lett. 1986 Jul 11;68(1):95–99. doi: 10.1016/0304-3940(86)90236-3. [DOI] [PubMed] [Google Scholar]
  48. Van de Voorde J., Leusen I. Role of the endothelium in the vasodilator response of rat thoracic aorta to histamine. Eur J Pharmacol. 1983 Jan 28;87(1):113–120. doi: 10.1016/0014-2999(83)90056-0. [DOI] [PubMed] [Google Scholar]
  49. Waldman S. A., Rapoport R. M., Murad F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem. 1984 Dec 10;259(23):14332–14334. [PubMed] [Google Scholar]
  50. Wiemer G., Hellwich U., Wellstein A., Dietz J., Hellwich M., Palm D. Energy-dependent extrusion of cyclic 3',5'-adenosine-monophosphate. A drug-sensitive regulatory mechanism for the intracellular nucleotide concentration in rat erythrocytes. Naunyn Schmiedebergs Arch Pharmacol. 1982 Dec;321(4):239–246. doi: 10.1007/BF00498507. [DOI] [PubMed] [Google Scholar]
  51. Winquist R. J., Faison E. P., Waldman S. A., Schwartz K., Murad F., Rapoport R. M. Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7661–7664. doi: 10.1073/pnas.81.23.7661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zumstein P., Zapf J., Froesch E. R. Effects of hormones on cyclic AMP release from rat adipose tissue in vitro. FEBS Lett. 1974 Dec 1;49(1):65–69. doi: 10.1016/0014-5793(74)80633-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES