Abstract
1. We have examined the effects of a range of smooth muscle relaxants on the maintained contractions produced in rat aortic rings by the protein kinase C activator, 4 beta-phorbol dibutyrate; these effects were compared with those on the contraction induced by the selective alpha 1-adrenoceptor agonist, methoxamine. The phorbol ester, at 0.3 microM, gave a sustained contraction which was, on average, of approximately the same magnitude as the maximum contraction produced by methoxamine, 10 microM. 2. The beta-adrenoceptor agonist, isoprenaline (0.01-1 microM) caused a dose-related relaxation of the methoxamine-induced contraction but had no effect on the contraction induced by the phorbol ester. 3. An activator of adenylate cyclase, forskolin (0.01-1 microM) produced a dose-related relaxation of the methoxamine-induced contraction and at 0.01-10 microM caused relaxation of the contraction induced by the phorbol ester. Similar results were obtained with the potassium channel activator, cromakalim (0.001-10 microM). 4. An activator of guanylate cyclase, sodium nitroprusside (0.001-100 microM) caused a dose-related relaxation of both the methoxamine-induced and the phorbol ester-induced contraction, being more effective on the former than on the latter. Similar results were obtained with enprofylline (1-1000 microM). 5. Methoxamine (10 nM-100 microM), given cumulatively, caused a dose-related contractile response. Pretreatment with isoprenaline (1 microM), enprofylline (10 microM) and nicorandil (1 microM) resulted in partial decrease of the subsequent response to methoxamine, while nicorandil (10 microM), forskolin (1 microM), sodium nitroprusside (10 microM) and cromakalim (1 microM) totally abolished it. 6. The phorbol ester, given cumulatively, caused increasing contraction in the concentration range 30 nM-10 microM. Pretreatment with forskolin (1 microM), sodium nitroprusside (10 microM), isoprenaline (1 microM), enprofylline (10 microM), nicorandil (1 microM or 10 microM), or cromakalin (1 microM or 10 microM), resulted in partial decrease of the subsequent response to 4 beta-phorbol dibutyrate. 7. These results are discussed in the light of the suggestion that protein kinase C may have a role in the 'latch-bridge' phase of smooth muscle contraction, and that inappropriate activation of protein kinase C may contribute to the pathogenesis of hypertension and other conditions involving vasospasm.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abbott A. Interrelationship between Na+ and Ca2+ metabolism in hypertension. Trends Pharmacol Sci. 1988 Apr;9(4):111–113. doi: 10.1016/0165-6147(88)90182-4. [DOI] [PubMed] [Google Scholar]
- Baron C. B., Cunningham M., Strauss J. F., 3rd, Coburn R. F. Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6899–6903. doi: 10.1073/pnas.81.21.6899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
- Blaustein M. P. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol. 1977 May;232(5):C165–C173. doi: 10.1152/ajpcell.1977.232.5.C165. [DOI] [PubMed] [Google Scholar]
- Bühler F. R., Resink T. J., Tkachuk V. A., Zschauer A., Dimitrov D., Raine A. E., Bolli P., Müller F. B., Erne P. Abnormal cellular calcium regulation in essential hypertension. J Cardiovasc Pharmacol. 1986;8 (Suppl 8):S145–S149. doi: 10.1097/00005344-198600088-00029. [DOI] [PubMed] [Google Scholar]
- Conti M. A., Adelstein R. S. The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3':5' cAMP-dependent protein kinase. J Biol Chem. 1981 Apr 10;256(7):3178–3181. [PubMed] [Google Scholar]
- Dale M. M., Obianime A. W. 4 beta-PDBu contracts parenchymal strip and synergizes with raised cytosolic calcium. Eur J Pharmacol. 1987 Sep 2;141(1):23–32. doi: 10.1016/0014-2999(87)90407-9. [DOI] [PubMed] [Google Scholar]
- Dale M. M., Obianime W. Phorbol myristate acetate causes in guinea-pig lung parenchymal strip a maintained spasm which is relatively resistant to isoprenaline. FEBS Lett. 1985 Oct 7;190(1):6–10. doi: 10.1016/0014-5793(85)80415-4. [DOI] [PubMed] [Google Scholar]
- Danthuluri N. R., Deth R. C. Phorbol ester-induced contraction of arterial smooth muscle and inhibition of alpha-adrenergic response. Biochem Biophys Res Commun. 1984 Dec 28;125(3):1103–1109. doi: 10.1016/0006-291x(84)91397-4. [DOI] [PubMed] [Google Scholar]
- Dillon P. F., Aksoy M. O., Driska S. P., Murphy R. A. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science. 1981 Jan 30;211(4481):495–497. doi: 10.1126/science.6893872. [DOI] [PubMed] [Google Scholar]
- Forder J., Scriabine A., Rasmussen H. Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction. J Pharmacol Exp Ther. 1985 Nov;235(2):267–273. [PubMed] [Google Scholar]
- Furchgott R. F. The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol. 1984;24:175–197. doi: 10.1146/annurev.pa.24.040184.001135. [DOI] [PubMed] [Google Scholar]
- Griendling K. K., Rittenhouse S. E., Brock T. A., Ekstein L. S., Gimbrone M. A., Jr, Alexander R. W. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells. J Biol Chem. 1986 May 5;261(13):5901–5906. [PubMed] [Google Scholar]
- Hai C. M., Murphy R. A. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am J Physiol. 1988 Jan;254(1 Pt 1):C99–106. doi: 10.1152/ajpcell.1988.254.1.C99. [DOI] [PubMed] [Google Scholar]
- Hamilton T. C., Weir S. W., Weston A. H. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol. 1986 May;88(1):103–111. doi: 10.1111/j.1476-5381.1986.tb09476.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardman J. G. Cyclic nucleotides and regulation of vascular smooth muscle. J Cardiovasc Pharmacol. 1984;6 (Suppl 4):S639–S645. doi: 10.1097/00005344-198406004-00010. [DOI] [PubMed] [Google Scholar]
- Heagerty A. M., Ollerenshaw J. D. The phosphoinositide signalling system and hypertension. J Hypertens. 1987 Oct;5(5):515–524. doi: 10.1097/00004872-198710000-00002. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Kadowitz P. J. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol. 1985;25:171–191. doi: 10.1146/annurev.pa.25.040185.001131. [DOI] [PubMed] [Google Scholar]
- Inoue T., Ito Y., Takeda K. The effects of 2-nicotinamidoethyl nitrate on smooth muscle cells of the dog mesenteric artery and trachea. Br J Pharmacol. 1983 Nov;80(3):459–470. doi: 10.1111/j.1476-5381.1983.tb10716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itoh T., Furukawa K., Kajiwara M., Kitamura K., Suzuki H., Ito Y., Kuriyama H. Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells and on adrenergic transmission in the guinea-pig and porcine mesenteric arteries. J Pharmacol Exp Ther. 1981 Jul;218(1):260–270. [PubMed] [Google Scholar]
- Jones A. W., Bylund D. B., Forte L. R. cAMP-dependent reduction in membrane fluxes during relaxation of arterial smooth muscle. Am J Physiol. 1984 Feb;246(2 Pt 2):H306–H311. doi: 10.1152/ajpheart.1984.246.2.H306. [DOI] [PubMed] [Google Scholar]
- Kamm K. E., Stull J. T. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol. 1985;25:593–620. doi: 10.1146/annurev.pa.25.040185.003113. [DOI] [PubMed] [Google Scholar]
- Karashima T., Itoh T., Kuriyama H. Effects of 2-nicotinamidoethyl nitrate on smooth muscle cells of the guinea-pig mesenteric and portal veins. J Pharmacol Exp Ther. 1982 May;221(2):472–480. [PubMed] [Google Scholar]
- Kato H., Takenawa T. Phospholipase C activation and diacylglycerol kinase inactivation lead to an increase in diacylglycerol content in spontaneously hypertensive rat. Biochem Biophys Res Commun. 1987 Aug 14;146(3):1419–1424. doi: 10.1016/0006-291x(87)90808-4. [DOI] [PubMed] [Google Scholar]
- Kelleher D. J., Pessin J. E., Ruoho A. E., Johnson G. L. Phorbol ester induces desensitization of adenylate cyclase and phosphorylation of the beta-adrenergic receptor in turkey erythrocytes. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4316–4320. doi: 10.1073/pnas.81.14.4316. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan J. P., Morgan K. G. Vascular smooth muscle: the first recorded Ca2+ transients. Pflugers Arch. 1982 Oct;395(1):75–77. doi: 10.1007/BF00584972. [DOI] [PubMed] [Google Scholar]
- Mulvany M. J. Vascular structure and smooth muscle contractility in experimental hypertension. J Cardiovasc Pharmacol. 1987;10 (Suppl 6):S79–S85. [PubMed] [Google Scholar]
- Nakaki T., Roth B. L., Chuang D. M., Costa E. Phasic and tonic components in 5-HT2 receptor-mediated rat aorta contraction: participation of Ca++ channels and phospholipase C. J Pharmacol Exp Ther. 1985 Aug;234(2):442–446. [PubMed] [Google Scholar]
- Nishikawa M., de Lanerolle P., Lincoln T. M., Adelstein R. S. Phosphorylation of mammalian myosin light chain kinases by the catalytic subunit of cyclic AMP-dependent protein kinase and by cyclic GMP-dependent protein kinase. J Biol Chem. 1984 Jul 10;259(13):8429–8436. [PubMed] [Google Scholar]
- Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
- Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
- Obianime A. W., Hirst S. J., Dale M. M. Interactions between phorbol esters and agents which increase cytosolic calcium in the guinea pig parenchymal strip: direct and indirect effects on the contractile response. J Pharmacol Exp Ther. 1988 Oct;247(1):262–270. [PubMed] [Google Scholar]
- Rapoport R. M. Cyclic guanosine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinositol hydrolysis in rat aorta. Circ Res. 1986 Mar;58(3):407–410. doi: 10.1161/01.res.58.3.407. [DOI] [PubMed] [Google Scholar]
- Rapoport R. M., Murad F. Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: role of cyclic GMP. J Cyclic Nucleotide Protein Phosphor Res. 1983;9(4-5):281–296. [PubMed] [Google Scholar]
- Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
- Rasmussen H., Forder J., Kojima I., Scriabine A. TPA-induced contraction of isolated rabbit vascular smooth muscle. Biochem Biophys Res Commun. 1984 Jul 31;122(2):776–784. doi: 10.1016/s0006-291x(84)80101-1. [DOI] [PubMed] [Google Scholar]
- Sibley D. R., Nambi P., Peters J. R., Lefkowitz R. J. Phorbol diesters promote beta-adrenergic receptor phosphorylation and adenylate cyclase desensitization in duck erythrocytes. Biochem Biophys Res Commun. 1984 Jun 29;121(3):973–979. doi: 10.1016/0006-291x(84)90772-1. [DOI] [PubMed] [Google Scholar]
- Singer H. A., Baker K. M. Calcium dependence of phorbol 12,13-dibutyrate-induced force and myosin light chain phosphorylation in arterial smooth muscle. J Pharmacol Exp Ther. 1987 Dec;243(3):814–821. [PubMed] [Google Scholar]
- Somlyo A. P. The messenger across the gap. Nature. 1985 Jul 25;316(6026):298–299. doi: 10.1038/316298b0. [DOI] [PubMed] [Google Scholar]
- Somlyo A. V., Bond M., Somlyo A. P., Scarpa A. Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5231–5235. doi: 10.1073/pnas.82.15.5231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sommerville L. E., Hartshorne D. J. Intracellular calcium and smooth muscle contraction. Cell Calcium. 1986 Dec;7(5-6):353–364. doi: 10.1016/0143-4160(86)90038-2. [DOI] [PubMed] [Google Scholar]
- Suematsu E., Hirata M., Hashimoto T., Kuriyama H. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem Biophys Res Commun. 1984 Apr 30;120(2):481–485. doi: 10.1016/0006-291x(84)91279-8. [DOI] [PubMed] [Google Scholar]
- Sumimoto K., Domae M., Yamanaka K., Nakao K., Hashimoto T., Kitamura K., Kuriyama H. Actions of nicorandil on vascular smooth muscles. J Cardiovasc Pharmacol. 1987;10 (Suppl 8):S66–S75. [PubMed] [Google Scholar]
- Wagner B., Schächtele C., Marmé D. Phorbol 12,13-dibutyrate-induced contraction of isolated rabbit vascular smooth muscle. Eur J Pharmacol. 1987 Aug 11;140(2):227–232. doi: 10.1016/0014-2999(87)90810-7. [DOI] [PubMed] [Google Scholar]
- Weir S. W., Weston A. H. Effect of apamin on responses to BRL 34915, nicorandil and other relaxants in the guinea-pig taenia caeci. Br J Pharmacol. 1986 May;88(1):113–120. doi: 10.1111/j.1476-5381.1986.tb09477.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weston A. H. Some effects of nicorandil on the smooth muscles of the rat and guinea pig. J Cardiovasc Pharmacol. 1987;10 (Suppl 8):S56–S61. [PubMed] [Google Scholar]
