Abstract
1. The effects of OPC-88117, a new antiarrhythmic agent, on transmembrane action potentials were examined in right ventricular papillary muscles and in single ventricular myocytes isolated from guinea-pig hearts. 2. In papillary muscles, OPC-88117 above 3 x 10(-6) M caused a dose-dependent prolongation of action potential duration (APD). 3. OPC-88117 above 3 x 10(-5) M caused a significant decrease in the maximum upstroke velocity (Vmax) of the action potential without affecting the resting membrane potential. The inhibition of Vmax was enhanced at higher stimulation frequencies. 4. In the presence of OPC-88117, trains of stimuli at rates greater than or equal to 1.0 Hz led to a use-dependent inhibition of Vmax with rapid onset. The time constant for the recovery of Vmax from the use-dependent block was 456 ms. 5. The curves relating membrane potential and Vmax were shifted by OPC-88117 to the direction of more negative potentials (9 mV at 10(-4) M). 6. In single ventricular myocytes treated with OPC-88117 (1-3 x 10(-4) M), the Vmax of test action potentials preceded by conditioning clamp pulses to 0 mV was decreased progressively as the clamp pulse duration was prolonged. 7. These findings suggest that the primary electrophysiological effect of OPC-88117 on the cardiac muscle cell is prolongation of APD (Class III action) and that at high concentrations, it may also possess a lignocaine-like sodium channel inhibitory effect (Class I action).
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campbell T. J. Importance of physico-chemical properties in determining the kinetics of the effects of Class I antiarrhythmic drugs on maximum rate of depolarization in guinea-pig ventricle. Br J Pharmacol. 1983 Sep;80(1):33–40. doi: 10.1111/j.1476-5381.1983.tb11046.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell T. J. Kinetics of onset of rate-dependent effects of Class I antiarrhythmic drugs are important in determining their effects on refractoriness in guinea-pig ventricle, and provide a theoretical basis for their subclassification. Cardiovasc Res. 1983 Jun;17(6):344–352. doi: 10.1093/cvr/17.6.344. [DOI] [PubMed] [Google Scholar]
- Courtney K. R. Why do some drugs preferentially block open sodium channels? J Mol Cell Cardiol. 1988 Jun;20(6):461–464. doi: 10.1016/s0022-2828(88)80073-7. [DOI] [PubMed] [Google Scholar]
- Ebihara L., Johnson E. A. Fast sodium current in cardiac muscle. A quantitative description. Biophys J. 1980 Nov;32(2):779–790. doi: 10.1016/S0006-3495(80)85016-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gintant G. A., Hoffman B. F., Naylor R. E. The influence of molecular form of local anesthetic-type antiarrhythmic agents on reduction of the maximum upstroke velocity of canine cardiac Purkinje fibers. Circ Res. 1983 Jun;52(6):735–746. doi: 10.1161/01.res.52.6.735. [DOI] [PubMed] [Google Scholar]
- Grant A. O., Starmer C. F., Strauss H. C. Antiarrhythmic drug action. Blockade of the inward sodium current. Circ Res. 1984 Oct;55(4):427–439. doi: 10.1161/01.res.55.4.427. [DOI] [PubMed] [Google Scholar]
- Hauswirth O., Singh B. N. Ionic mechanisms in heart muscle in relation to the genesis and the pharmacological control of cardiac arrhythmias. Pharmacol Rev. 1978 Mar;30(1):5–63. [PubMed] [Google Scholar]
- Hondeghem L. M., Katzung B. G. Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. Annu Rev Pharmacol Toxicol. 1984;24:387–423. doi: 10.1146/annurev.pa.24.040184.002131. [DOI] [PubMed] [Google Scholar]
- Hondeghem L. M., Katzung B. G. Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim Biophys Acta. 1977 Nov 14;472(3-4):373–398. doi: 10.1016/0304-4157(77)90003-x. [DOI] [PubMed] [Google Scholar]
- Hondeghem L., Katzung B. G. Test of a model of antiarrhythmic drug action. Effects of quinidine and lidocaine on myocardial conduction. Circulation. 1980 Jun;61(6):1217–1224. doi: 10.1161/01.cir.61.6.1217. [DOI] [PubMed] [Google Scholar]
- Kodama I., Kondo N., Shibata S., Yamada K. Effects of dimethylpropranolol (UM-272) on the electrophysiological properties of guinea-pig ventricular muscles. J Pharmacol Exp Ther. 1985 Aug;234(2):507–514. [PubMed] [Google Scholar]
- Kodama I., Toyama J., Yamada K. Competitive inhibition of cardiac sodium channels by aprindine and lidocaine studied using a maximum upstroke velocity of action potential in guinea pig ventricular muscles. J Pharmacol Exp Ther. 1987 Jun;241(3):1065–1071. [PubMed] [Google Scholar]
- Toyama J., Kamiya K., Kodama I., Yamada K. Frequency- and voltage-dependent effects of aprindine on the upstroke velocity of action potential in guinea pig ventricular muscles. J Cardiovasc Pharmacol. 1987 Feb;9(2):165–172. doi: 10.1097/00005344-198702000-00007. [DOI] [PubMed] [Google Scholar]
- Vaughan Williams E. M. A classification of antiarrhythmic actions reassessed after a decade of new drugs. J Clin Pharmacol. 1984 Apr;24(4):129–147. doi: 10.1002/j.1552-4604.1984.tb01822.x. [DOI] [PubMed] [Google Scholar]
- Watanabe T., Rautaharju P. M., McDonald T. F. Ventricular action potentials, ventricular extracellular potentials, and the ECG of guinea pig. Circ Res. 1985 Sep;57(3):362–373. doi: 10.1161/01.res.57.3.362. [DOI] [PubMed] [Google Scholar]