Abstract
1. Recently, we suggested that the D2-dopamine receptor involved in the inhibition of evoked [3H]-acetylcholine release from rat striatum is coupled to K+-channels. 2. In the present study, an attempt was made to elucidate further the role of these K+-channels, using the K+-channel blocking agents tetraethylammonium and 4-aminopyridine. With a superfusion method, the effects of both drugs on the D2-dopamine receptor-mediated inhibition of the electrically evoked release of [3H]-acetylcholine from rat striatal tissue slices was investigated. 3. Both tetraethylammonium (30 mM) and 4-aminopyridine (0.1 mM) significantly stimulated the electrically evoked release of [3H]-acetylcholine and completely abolished the effect of the selective D2-receptor agonist LY 171555 (1 microM) on evoked acetylcholine release. In addition, tetraethylammonium (0.03-30 mM) and 4-aminopyridine (0.003-1 mM) strongly increased the basal (non-evoked) release of radioactivity in a concentration-dependent manner. The results suggest that the effect of the drugs on the basal release of radioactivity and on the electrically evoked release of acetylcholine cannot exclusively be explained by their action on K+-channels. 4. Furthermore, with the use of a receptor binding assay, data were obtained on the affinity of tetraethylammonium and 4-aminopyridine for D2-receptors and various other neurotransmitter recognition sites. At concentrations in which both drugs are known to block K+-channels, they were found to inhibit the specific binding of selective radioligands to their respective recognition sites. 5. It is concluded that due to their 'side-effects', both tetraethylammonium and 4-aminopyridine are of only limited value in the investigation of the alleged interaction between neurotransmitter receptors and K+-channels.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Drukarch B., Schepens E., Schoffelmeer A. N., Stoof J. C. Stimulation of D-2 dopamine receptors decreases the evoked in vitro release of [3H]acetylcholine from rat neostriatum: role of K+ and Ca2+. J Neurochem. 1989 Jun;52(6):1680–1685. doi: 10.1111/j.1471-4159.1989.tb07244.x. [DOI] [PubMed] [Google Scholar]
- Freedman J. E., Weight F. F. Single K+ channels activated by D2 dopamine receptors in acutely dissociated neurons from rat corpus striatum. Proc Natl Acad Sci U S A. 1988 May;85(10):3618–3622. doi: 10.1073/pnas.85.10.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermann A., Gorman A. L. Effects of 4-aminopyridine on potassium currents in a molluscan neuron. J Gen Physiol. 1981 Jul;78(1):63–86. doi: 10.1085/jgp.78.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermann A., Gorman A. L. Effects of tetraethylammonium on potassium currents in a molluscan neurons. J Gen Physiol. 1981 Jul;78(1):87–110. doi: 10.1085/jgp.78.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Illes P. Mechanisms of receptor-mediated modulation of transmitter release in noradrenergic, cholinergic and sensory neurones. Neuroscience. 1986 Apr;17(4):909–928. doi: 10.1016/0306-4522(86)90071-0. [DOI] [PubMed] [Google Scholar]
- Ingram C. D., Bicknell R. J., Mason W. T. Intracellular recordings from bovine anterior pituitary cells: modulation of spontaneous activity by regulators of prolactin secretion. Endocrinology. 1986 Dec;119(6):2508–2518. doi: 10.1210/endo-119-6-2508. [DOI] [PubMed] [Google Scholar]
- Israel J. M., Jaquet P., Vincent J. D. The electrical properties of isolated human prolactin-secreting adenoma cells and their modification by dopamine. Endocrinology. 1985 Oct;117(4):1448–1455. doi: 10.1210/endo-117-4-1448. [DOI] [PubMed] [Google Scholar]
- Israel J. M., Kirk C., Vincent J. D. Electrophysiological responses to dopamine of rat hypophysial cells in lactotroph-enriched primary cultures. J Physiol. 1987 Sep;390:1–22. doi: 10.1113/jphysiol.1987.sp016682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacey M. G., Mercuri N. B., North R. A. Dopamine acts on D2 receptors to increase potassium conductance in neurones of the rat substantia nigra zona compacta. J Physiol. 1987 Nov;392:397–416. doi: 10.1113/jphysiol.1987.sp016787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacey M. G., Mercuri N. B., North R. A. On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J Physiol. 1988 Jul;401:437–453. doi: 10.1113/jphysiol.1988.sp017171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leysen J. E., Gommeren W., Eens A., de Chaffoy de Courcelles D., Stoof J. C., Janssen P. A. Biochemical profile of risperidone, a new antipsychotic. J Pharmacol Exp Ther. 1988 Nov;247(2):661–670. [PubMed] [Google Scholar]
- Leysen J. E., Van Gompel P., Gommeren W., Woestenborghs R., Janssen P. A. Down regulation of serotonin-S2 receptor sites in rat brain by chronic treatment with the serotonin-S2 antagonists: ritanserin and setoperone. Psychopharmacology (Berl) 1986;88(4):434–444. doi: 10.1007/BF00178504. [DOI] [PubMed] [Google Scholar]
- Memo M., Castelletti L., Missale C., Spano P. F. Stimulation of dopamine D-2 receptors increases potassium permeability in mammotrophs. Eur J Pharmacol. 1987 Jul 23;139(3):361–362. doi: 10.1016/0014-2999(87)90597-8. [DOI] [PubMed] [Google Scholar]
- Mulder A. H. An overview of subcellular localization, release and termination of action of amine, amino acid and peptide neurotransmitters in the central nervous system. Prog Brain Res. 1982;55:135–156. doi: 10.1016/S0079-6123(08)64194-1. [DOI] [PubMed] [Google Scholar]
- Plantjé J. F., Steinbusch H. W., Schipper J., Dijcks F. A., Verheijden P. F., Stoof J. C. D-2 dopamine-receptors regulate the release of [3H]dopamine in rat cortical regions showing dopamine immunoreactive fibers. Neuroscience. 1987 Jan;20(1):157–168. doi: 10.1016/0306-4522(87)90009-1. [DOI] [PubMed] [Google Scholar]
- Rudy B. Diversity and ubiquity of K channels. Neuroscience. 1988 Jun;25(3):729–749. doi: 10.1016/0306-4522(88)90033-4. [DOI] [PubMed] [Google Scholar]
- Schoffelmeer A. N., Mulder A. H. Differential control of Ca2+-dependent [3H]noradrenaline release from rat brain slices through presynaptic opiate receptors and alpha-adrenoceptors. Eur J Pharmacol. 1983 Mar 4;87(4):449–458. doi: 10.1016/0014-2999(83)90084-5. [DOI] [PubMed] [Google Scholar]
- Stoof J. C., Kebabian J. W. Independent in vitro regulation by the D-2 dopamine receptor of dopamine-stimulated efflux of cyclic AMP and K+-stimulated release of acetylcholine from rat neostriatum. Brain Res. 1982 Nov 4;250(2):263–270. doi: 10.1016/0006-8993(82)90420-6. [DOI] [PubMed] [Google Scholar]
- Stoof J. C., Kebabian J. W. Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci. 1984 Dec 3;35(23):2281–2296. doi: 10.1016/0024-3205(84)90519-8. [DOI] [PubMed] [Google Scholar]
- Zimanyi I., Folly G., Vizi E. S. Inhibition of K+ permeability diminishes alpha 2-adrenoceptor mediated effects on norepinephrine release. J Neurosci Res. 1988 May;20(1):102–108. doi: 10.1002/jnr.490200114. [DOI] [PubMed] [Google Scholar]
