Abstract
1. The effects of (-)-baclofen, muscimol and phaclofen on endogenous gamma-aminobutyric acid (GABA) release from rat cortical slices, spinal cord slices and entire retinas were studied. 2. The spontaneous resting release of GABA from the three tissues was 3 to 6 pmol mg-1 wet wt 10 min-1. Depolarization of cortical slices with KCl (50 mM) (high-K) produced an 8 fold increase in GABA release but high-K did not evoke an increased release of GABA from spinal slices or retinas. 3. When rats were injected with gamma-vinyl-GABA (250 mg kg-1 i.p.) (GVG) 18 h before death, the tissue GABA stores were increased 3 to 6 fold and high-K then evoked striking Ca-dependent releases of GABA from all three tissues. Thus, in subsequent experiments, unless otherwise stated, the nervous tissues were taken from GVG-treated rats. 4. (-)-Baclofen (10 microM) significantly reduced the K-evoked release of GABA from cortical and spinal slices but retinal release was not affected, even at a concentration of (+/-)-baclofen of 1 mM. For cortical slices, the IC50 for baclofen was approximately 5.2 microM. The inhibitory effect of baclofen on GABA release from cortical slices also occurred in slices prepared from saline-injected rats, indicating that GVG treatment did not qualitatively affect the results. 5. The inhibitory effect of (-)-baclofen on the K-evoked release of GABA from cortical and spinal slices was antagonised by phaclofen (500 microM), confirming that baclofen was producing its effects by acting at the GABAB-receptor.(ABSTRACT TRUNCATED AT 250 WORDS)
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R. A., Mitchell R. Evidence for GABAB autoreceptors in median eminence. Eur J Pharmacol. 1985 Dec 3;118(3):355–358. doi: 10.1016/0014-2999(85)90148-7. [DOI] [PubMed] [Google Scholar]
- Bonanno G., Fontana G., Raiteri M. Phaclofen antagonizes GABA at autoreceptors regulating release in rat cerebral cortex. Eur J Pharmacol. 1988 Sep 13;154(2):223–224. doi: 10.1016/0014-2999(88)90104-5. [DOI] [PubMed] [Google Scholar]
- Bowery N. G., Doble A., Hill D. R., Hudson A. L., Shaw J. S., Turnbull M. J. Baclofen: a selective agonist for a novel type of GABA receptor proceedings. Br J Pharmacol. 1979 Nov;67(3):444P–445P. [PMC free article] [PubMed] [Google Scholar]
- Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., Turnbull M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature. 1980 Jan 3;283(5742):92–94. doi: 10.1038/283092a0. [DOI] [PubMed] [Google Scholar]
- Brennan M. J., Cantrill R. C. Delta-aminolaevulinic acid is a potent agonist for GABA autoreceptors. Nature. 1979 Aug 9;280(5722):514–515. doi: 10.1038/280514a0. [DOI] [PubMed] [Google Scholar]
- Brennan M. J., Cantrill R. C., Oldfield M., Krogsgaard-Larsen P. Inhibition of gamma-aminobutyric acid release by gamma-aminobutyric acid agonist drugs. Pharmacology of the gamma-aminobutyric acid autoreceptor. Mol Pharmacol. 1981 Jan;19(1):27–30. [PubMed] [Google Scholar]
- Collins G. G., Anson J., Kelly E. P. Baclofen: effects on evoked field potentials and amino acid neurotransmitter release in the rat olfactory cortex slice. Brain Res. 1982 Apr 29;238(2):371–383. doi: 10.1016/0006-8993(82)90111-1. [DOI] [PubMed] [Google Scholar]
- Conzelmann U., Meyer D. K., Sperk G. Stimulation of receptors of gamma-aminobutyric acid modulates the release of cholecystokinin-like immunoreactivity from slices of rat neostriatum. Br J Pharmacol. 1986 Dec;89(4):845–852. doi: 10.1111/j.1476-5381.1986.tb11190.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunningham J., Neal M. J. On the mechanism by which veratridine causes a calcium-independent release of gamma-aminobutyric acid from brain slices. Br J Pharmacol. 1981 Jul;73(3):655–667. doi: 10.1111/j.1476-5381.1981.tb16801.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dutar P., Nicoll R. A. A physiological role for GABAB receptors in the central nervous system. Nature. 1988 Mar 10;332(6160):156–158. doi: 10.1038/332156a0. [DOI] [PubMed] [Google Scholar]
- Gray J. A., Green A. R. GABAB-receptor mediated inhibition of potassium-evoked release of endogenous 5-hydroxytryptamine from mouse frontal cortex. Br J Pharmacol. 1987 Jul;91(3):517–522. doi: 10.1111/j.1476-5381.1987.tb11244.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harrison N. L., Lange G. D., Barker J. L. (-)-Baclofen activates presynaptic GABAB receptors on GABAergic inhibitory neurons from embryonic rat hippocampus. Neurosci Lett. 1988 Feb 15;85(1):105–109. doi: 10.1016/0304-3940(88)90437-5. [DOI] [PubMed] [Google Scholar]
- Hopkin J., Neal M. J. Effect of electrical stimulation and high potassium concentrations on the effux of (14C) glycine from slices of spinal cord. Br J Pharmacol. 1971 Jun;42(2):215–223. doi: 10.1111/j.1476-5381.1971.tb07102.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston G. A., Hailstone M. H., Freeman C. G. Baclofen: stereoselective inhibition of excitant amino acid release. J Pharm Pharmacol. 1980 Mar;32(3):230–231. doi: 10.1111/j.2042-7158.1980.tb12902.x. [DOI] [PubMed] [Google Scholar]
- Kato K., Goto M., Fukuda H. Baclofen: inhibition of the release of L-[3H]glutamate and L-[3H]aspartate from rat whole brain synaptosomes. Gen Pharmacol. 1982;13(5):445–447. doi: 10.1016/0306-3623(82)90112-4. [DOI] [PubMed] [Google Scholar]
- Kerr D. I., Ong J., Prager R. H., Gynther B. D., Curtis D. R. Phaclofen: a peripheral and central baclofen antagonist. Brain Res. 1987 Mar 3;405(1):150–154. doi: 10.1016/0006-8993(87)90999-1. [DOI] [PubMed] [Google Scholar]
- Kuriyama K., Kanmori K., Taguchi J., Yoneda Y. Stress-induced enhancement of suppression of [3H]GABA release from striatal slices by presynaptic autoreceptor. J Neurochem. 1984 Apr;42(4):943–950. doi: 10.1111/j.1471-4159.1984.tb12695.x. [DOI] [PubMed] [Google Scholar]
- Limberger N., Späth L., Starke K. A search for receptors modulating the release of gamma-[3H]aminobutyric acid in rabbit caudate nucleus slices. J Neurochem. 1986 Apr;46(4):1109–1117. doi: 10.1111/j.1471-4159.1986.tb00625.x. [DOI] [PubMed] [Google Scholar]
- Neal M. J., Cunningham J. R., Shah M. A., Yazulla S. Immunocytochemical evidence that vigabatrin in rats causes GABA accumulation in glial cells of the retina. Neurosci Lett. 1989 Mar 13;98(1):29–32. doi: 10.1016/0304-3940(89)90368-6. [DOI] [PubMed] [Google Scholar]
- Pittaluga A., Asaro D., Pellegrini G., Raiteri M. Studies on [3H]GABA and endogenous GABA release in rat cerebral cortex suggest the presence of autoreceptors of the GABAB type. Eur J Pharmacol. 1987 Nov 24;144(1):45–52. doi: 10.1016/0014-2999(87)90007-0. [DOI] [PubMed] [Google Scholar]
- Potashner S. J. Baclofen: effects on amino acid release and metabolism in slices of guinea pig cerebral cortex. J Neurochem. 1979 Jan;32(1):103–109. doi: 10.1111/j.1471-4159.1979.tb04516.x. [DOI] [PubMed] [Google Scholar]
- Pringle J. A., Byers P. D., Brown M. E. Immunofluorescence in osteoarthritis. Nature. 1978 Jul 6;274(5666):94–94. doi: 10.1038/274094a0. [DOI] [PubMed] [Google Scholar]
- Waldmeier P. C., Wicki P., Feldtrauer J. J., Baumann P. A. Potential involvement of a baclofen-sensitive autoreceptor in the modulation of the release of endogenous GABA from rat brain slices in vitro. Naunyn Schmiedebergs Arch Pharmacol. 1988 Mar;337(3):289–295. doi: 10.1007/BF00168841. [DOI] [PubMed] [Google Scholar]
- Yazulla S., Cunningham J., Neal M. Stimulated release of endogenous GABA and glycine from the goldfish retina. Brain Res. 1985 Oct 21;345(2):384–388. doi: 10.1016/0006-8993(85)91022-4. [DOI] [PubMed] [Google Scholar]
- Zhu X. Z., Chuang D. M. Modulation of calcium uptake and D-aspartate release by GABAB receptors in cultured cerebellar granule cells. Eur J Pharmacol. 1987 Sep 23;141(3):401–408. doi: 10.1016/0014-2999(87)90557-7. [DOI] [PubMed] [Google Scholar]
