Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Oct;98(2):700–706. doi: 10.1111/j.1476-5381.1989.tb12645.x

Endothelium-dependent calcium-induced relaxation in the presence of Ca2+-antagonists in canine depolarized coronary arteries.

K Kikkawa 1, S Murata 1, T Nagao 1
PMCID: PMC1854722  PMID: 2819339

Abstract

1. We examined the mechanisms underlying Ca2+-induced relaxation in the presence of clentiazem, a new Ca2+-antagonist, in depolarized coronary arteries of the dog. 2. Ca2+ (3 x 10(-5)-3 x 10(-3) M) caused an unexpected relaxation in the presence of a high concentration of clentiazem (10(-6) M) in coronary, but not in mesenteric or renal arteries. 3. The Ca2+-induced relaxation was also observed in the presence of established Ca2+-antagonists such as diltiazem (3 x 10(-6) M), nifedipine (3 x 10(-8) M) and verapamil (3 x 10(-6) M). 4. The Ca2+-induced relaxation was inhibited by removal of the endothelium, treatment with oxyhaemoglobin (1.5 x 10(-6) M) or methylene blue (10(-5) M), but not by treatment with indomethacin (5 x 10(-6) M). 5. The Ca2+-induced relaxation was observed in an endothelium-denuded coronary artery segment when closely apposed to an endothelium-containing segment of coronary or mesenteric artery. 6. These results suggest that Ca2+-induced relaxation in the presence of high concentrations of Ca2+-antagonists is mediated through endothelium-derived relaxing factor (EDRF). In addition, Ca2+-antagonists do not affect the Ca2+-influx necessary for the release and/or synthesis of EDRF.

Full text

PDF
700

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Feletou M., Vanhoutte P. M. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol. 1988 Mar;93(3):515–524. doi: 10.1111/j.1476-5381.1988.tb10306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  3. Griffith T. M., Edwards D. H., Lewis M. J., Henderson A. H. Evidence that cyclic guanosine monophosphate (cGMP) mediates endothelium-dependent relaxation. Eur J Pharmacol. 1985 Jun 7;112(2):195–202. doi: 10.1016/0014-2999(85)90496-0. [DOI] [PubMed] [Google Scholar]
  4. Ignarro L. J., Buga G. M., Wood K. S., Byrns R. E., Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9265–9269. doi: 10.1073/pnas.84.24.9265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ignarro L. J., Kadowitz P. J. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol. 1985;25:171–191. doi: 10.1146/annurev.pa.25.040185.001131. [DOI] [PubMed] [Google Scholar]
  6. Jayakody R. L., Kappagoda C. T., Senaratne M. P., Sreeharan N. Absence of effect of calcium antagonists on endothelium-dependent relaxation in rabbit aorta. Br J Pharmacol. 1987 May;91(1):155–164. doi: 10.1111/j.1476-5381.1987.tb08994.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kikkawa K., Murata S., Nagao T. Calcium antagonistic and spasmolytic activities of a new 1,5-benzothiazepine derivative in isolated canine and monkey arteries. Arzneimittelforschung. 1988 Apr;38(4):526–531. [PubMed] [Google Scholar]
  8. Komori K., Lorenz R. R., Vanhoutte P. M. Nitric oxide, ACh, and electrical and mechanical properties of canine arterial smooth muscle. Am J Physiol. 1988 Jul;255(1 Pt 2):H207–H212. doi: 10.1152/ajpheart.1988.255.1.H207. [DOI] [PubMed] [Google Scholar]
  9. Loeb A. L., Izzo N. J., Jr, Johnson R. M., Garrison J. C., Peach M. J. Endothelium-derived relaxing factor release associated with increased endothelial cell inositol trisphosphate and intracellular calcium. Am J Cardiol. 1988 Oct 5;62(11):36G–40G. doi: 10.1016/0002-9149(88)90030-6. [DOI] [PubMed] [Google Scholar]
  10. Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins. J Pharmacol Exp Ther. 1985 Jun;233(3):679–685. [PubMed] [Google Scholar]
  11. Martin W., Villani G. M., Jothianandan D., Furchgott R. F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J Pharmacol Exp Ther. 1985 Mar;232(3):708–716. [PubMed] [Google Scholar]
  12. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  13. Pfitzer G., Hofmann F., DiSalvo J., Rüegg J. C. cGMP and cAMP inhibit tension development in skinned coronary arteries. Pflugers Arch. 1984 Jul;401(3):277–280. doi: 10.1007/BF00582596. [DOI] [PubMed] [Google Scholar]
  14. Popescu L. M., Panoiu C., Hinescu M., Nutu O. The mechanism of cGMP-induced relaxation in vascular smooth muscle. Eur J Pharmacol. 1985 Jan 8;107(3):393–394. doi: 10.1016/0014-2999(85)90269-9. [DOI] [PubMed] [Google Scholar]
  15. Singer H. A., Peach M. J. Calcium- and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension. 1982 May-Jun;4(3 Pt 2):19–25. [PubMed] [Google Scholar]
  16. Tayo F. M., Bevan J. A. Extracellular calcium dependence of contraction and endothelium-dependent relaxation varies along the length of the aorta and its branches. J Pharmacol Exp Ther. 1987 Feb;240(2):594–601. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES