Abstract
We examined 134 pediatric clinical isolates of Enterobacteriaceae, Pseudomonas aeruginosa, and gram-positive cocci for susceptibility to aztreonam alone and in combination with seven other antibiotics. All 98 gram-negative isolates were susceptible to aztreonam with similar inhibitory and bactericidal activity. Combinations of aztreonam with cefoxitin, ampicillin, or clindamycin were generally indifferent or additive. Synergism was occasionally seen against enteric organisms with aztreonam plus cefoxitin or clindamycin. Combinations of tobramycin and aztreonam were synergistic (62%) against P. aeruginosa; aztreonam plus piperacillin or ticarcillin was additive. Aztreonam did not affect the activity of nafcillin against Staphylococcus aureus, or of ampicillin against species of Streptococcus group B or D. Antagonism was seen only with aztreonam plus cefoxitin against Enterobacter species, but not at clinically significant concentrations. Several combinations of antibiotics with aztreonam should be appropriate for initial therapy of infections in children without major risks of antibacterial antagonism.
Full text
PDF![212](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3dc/185476/addd5f0b0583/aac00191-0068.png)
![213](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3dc/185476/001dde792107/aac00191-0069.png)
![214](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3dc/185476/04911aafae31/aac00191-0070.png)
![215](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3dc/185476/e973ea260dc1/aac00191-0071.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ELION G. B., SINGER S., HITCHINGS G. H. Antagonists of nucleic acid derivatives. VIII. Synergism in combinations of biochemically related antimetabolites. J Biol Chem. 1954 Jun;208(2):477–488. [PubMed] [Google Scholar]
- Fainstein V., Weaver S., Bodey G. P. Comparative in vitro study of SQ26,776. Antimicrob Agents Chemother. 1982 Feb;21(2):294–298. doi: 10.1128/aac.21.2.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobus N. V., Ferreira M. C., Barza M. In vitro activity of azthreonam, a monobactam antibiotic. Antimicrob Agents Chemother. 1982 Nov;22(5):832–838. doi: 10.1128/aac.22.5.832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King T. C., Krogstad D. J. Spectrophotometric assessment of dose-response curves for single antimicrobial agents and antimicrobial combinations. J Infect Dis. 1983 Apr;147(4):758–764. doi: 10.1093/infdis/147.4.758. [DOI] [PubMed] [Google Scholar]
- King T. C., Schlessinger D., Krogstad D. J. The assessment of antimicrobial combinations. Rev Infect Dis. 1981 May-Jun;3(3):627–633. doi: 10.1093/clinids/3.3.627. [DOI] [PubMed] [Google Scholar]
- Markowitz S. M., Sibilla D. J. In vitro activity of cefoxitin, alone and in combination with aminoglycoside or other beta-lactam antibiotics against common gram-negative pathogens. Chemotherapy. 1983;29(2):89–98. doi: 10.1159/000238180. [DOI] [PubMed] [Google Scholar]
- Michel J., Bornstein H., Luboshitzky R., Sacks T. Mechanis of chlorampenicol-cephalordine synergism on Enerobacteiaeae. Antimicrob Agents Chemother. 1975 Jun;7(6):845–849. doi: 10.1128/aac.7.6.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reeves D. S., Bywater M. J., Holt H. A. Antibacterial activity of the monobactam SQ 26,776 against antibiotic resistant enterobacteria, including Serratia spp. J Antimicrob Chemother. 1981 Dec;8 (Suppl E):57–68. doi: 10.1093/jac/8.suppl_e.57. [DOI] [PubMed] [Google Scholar]
- Sanders C. C. Novel resistance selected by the new expanded-spectrum cephalosporins: a concern. J Infect Dis. 1983 Mar;147(3):585–589. doi: 10.1093/infdis/147.3.585. [DOI] [PubMed] [Google Scholar]
- Sanders C. C., Sanders W. E., Jr Emergence of resistance during therapy with the newer beta-lactam antibiotics: role of inducible beta-lactamases and implications for the future. Rev Infect Dis. 1983 Jul-Aug;5(4):639–648. doi: 10.1093/clinids/5.4.639. [DOI] [PubMed] [Google Scholar]
- Sanders C. C., Sanders W. E., Jr Emergence of resistance to cefamandole: possible role of cefoxitin-inducible beta-lactamases. Antimicrob Agents Chemother. 1979 Jun;15(6):792–797. doi: 10.1128/aac.15.6.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders C. C., Sanders W. E., Jr, Goering R. V. Influence of clindamycin on derepression of beta-lactamases in Enterobacter spp. and Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1983 Jul;24(1):48–53. doi: 10.1128/aac.24.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swabb E. A., Leitz M. A., Pilkiewicz F. G., Sugerman A. A. Pharmacokinetics of the monobactam SQ 26,776 after single intravenous doses in healthy subjects. J Antimicrob Chemother. 1981 Dec;8 (Suppl E):131–140. doi: 10.1093/jac/8.suppl_e.131. [DOI] [PubMed] [Google Scholar]
- Sykes R. B., Bonner D. P., Bush K., Georgopapadakou N. H. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob Agents Chemother. 1982 Jan;21(1):85–92. doi: 10.1128/aac.21.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sykes R. B., Cimarusti C. M., Bonner D. P., Bush K., Floyd D. M., Georgopapadakou N. H., Koster W. M., Liu W. C., Parker W. L., Principe P. A. Monocyclic beta-lactam antibiotics produced by bacteria. Nature. 1981 Jun 11;291(5815):489–491. doi: 10.1038/291489a0. [DOI] [PubMed] [Google Scholar]
- Weinstein R. J., Young L. S., Hewitt W. L. Comparison of methods for assessing in vitro antibiotic synergism against Pseudomonas and Serratia. J Lab Clin Med. 1975 Nov;86(5):853–862. [PubMed] [Google Scholar]