Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Nov;98(3):890–897. doi: 10.1111/j.1476-5381.1989.tb14618.x

Differences between the alpha 2-adrenoceptor in rat submaxillary gland and the alpha 2A-and alpha 2B-adrenoceptor subtypes.

A D Michel 1, D N Loury 1, R L Whiting 1
PMCID: PMC1854763  PMID: 2556205

Abstract

1. The alpha 2-adrenoceptors of rat submaxillary gland, labelled with [3H]-rauwolscine, were characterized by use of a range of subtype selective ligands and were compared to rabbit spleen alpha 2A-adrenoceptors and rat kidney alpha 2B-adrenoceptors. 2. In rat submaxillary gland, [3H]-rauwolscine labelled an apparently homogeneous population of binding sites with relatively low affinity (Kd = 11.65 nM) compared to the affinity in rat kidney (Kd = 2.18 nM) and rabbit spleen (Kd = 4.64 nM). 3. In competition studies using 16 ligands the alpha 2-adrenoceptors in rat submaxillary gland appeared to differ from both the alpha 2A-adrenoceptor of rabbit spleen (r = 0.62) and also the alpha 2B-adrenoceptor of rat kidney (r = 0.28). 4. The affinity data obtained with benoxathian, imiloxan and WB 4101 indicated the presence of an alpha 2B-adrenoceptor in rat submaxillary gland. However, data for chlorpromaxine, oxymetazoline, spiroxatrine and xylometazoline indicated that submaxillary gland alpha 2-adrenoceptors were of the alpha 2A subtype. The affinity estimate for prazosin in rat submaxillary gland was intermediate between its affinity at the alpha 2A- and alpha 2B-adrenoceptors while affinity estimates for idazoxan and phentolamine in rat submaxillary gland were greater than those obtained at either the alpha 2A- or alpha 2B-adrenoceptor. 5. These data indicate that rat submaxillary gland alpha 2-adrenoceptors differ from the alpha 2A- and alpha 2B-adrenoceptors found in rabbit spleen and rat kidney, respectively.

Full text

PDF
890

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner T. I., Young A. C., Brann M. R., Buckley N. J. Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron. 1988 Jul;1(5):403–410. doi: 10.1016/0896-6273(88)90190-0. [DOI] [PubMed] [Google Scholar]
  2. Bylund D. B. Heterogeneity of alpha-2 adrenergic receptors. Pharmacol Biochem Behav. 1985 May;22(5):835–843. doi: 10.1016/0091-3057(85)90536-2. [DOI] [PubMed] [Google Scholar]
  3. Bylund D. B., Ray-Prenger C., Murphy T. J. Alpha-2A and alpha-2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther. 1988 May;245(2):600–607. [PubMed] [Google Scholar]
  4. Bylund D. B. Subtypes of alpha 2-adrenoceptors: pharmacological and molecular biological evidence converge. Trends Pharmacol Sci. 1988 Oct;9(10):356–361. doi: 10.1016/0165-6147(88)90254-4. [DOI] [PubMed] [Google Scholar]
  5. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  6. Cheung Y. D., Barnett D. B., Nahorski S. R. [3H]Rauwolscine and [3H]yohimbine binding to rat cerebral and human platelet membranes: possible heterogeneity of alpha 2-adrenoceptors. Eur J Pharmacol. 1982 Oct 15;84(1-2):79–85. doi: 10.1016/0014-2999(82)90159-5. [DOI] [PubMed] [Google Scholar]
  7. Fargin A., Raymond J. R., Lohse M. J., Kobilka B. K., Caron M. G., Lefkowitz R. J. The genomic clone G-21 which resembles a beta-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature. 1988 Sep 22;335(6188):358–360. doi: 10.1038/335358a0. [DOI] [PubMed] [Google Scholar]
  8. Kawahara R. S., Bylund D. B. Solubilization and characterization of putative alpha-2 adrenergic isoceptors from the human platelet and the rat cerebral cortex. J Pharmacol Exp Ther. 1985 Jun;233(3):603–610. [PubMed] [Google Scholar]
  9. Kobilka B. K., Matsui H., Kobilka T. S., Yang-Feng T. L., Francke U., Caron M. G., Lefkowitz R. J., Regan J. W. Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science. 1987 Oct 30;238(4827):650–656. doi: 10.1126/science.2823383. [DOI] [PubMed] [Google Scholar]
  10. Michel A. D., Whiting R. L. Methoctramine, a polymethylene tetraamine, differentiates three subtypes of muscarinic receptor in direct binding studies. Eur J Pharmacol. 1988 Jan 5;145(1):61–66. doi: 10.1016/0014-2999(88)90349-4. [DOI] [PubMed] [Google Scholar]
  11. Murphy T. J., Bylund D. B. Characterization of alpha-2 adrenergic receptors in the OK cell, an opossum kidney cell line. J Pharmacol Exp Ther. 1988 Feb;244(2):571–578. [PubMed] [Google Scholar]
  12. Nahorski S. R., Barnett D. B., Cheung Y. D. alpha-Adrenoceptor-effector coupling: affinity states or heterogeneity of the alpha 2-adrenoceptor? Clin Sci (Lond) 1985;68 (Suppl 10):39s–42s. doi: 10.1042/cs068s039. [DOI] [PubMed] [Google Scholar]
  13. Regan J. W., Kobilka T. S., Yang-Feng T. L., Caron M. G., Lefkowitz R. J., Kobilka B. K. Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6301–6305. doi: 10.1073/pnas.85.17.6301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ruffolo R. R., Jr, Sulpizio A. C., Nichols A. J., DeMarinis R. M., Hieble J. P. Pharmacologic differentiation between pre- and postjunctional alpha 2-adrenoceptors by SK&F 104078. Naunyn Schmiedebergs Arch Pharmacol. 1987 Oct;336(4):415–418. doi: 10.1007/BF00164875. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES