Abstract
1. Pithed rats were respired at a fixed rate of 54 cycles min-1 and with a ventilation volume of either 20 (control) or 10 ml kg-1. In these two preparations, the dose-response relationships for the systemic blood pressure responses to endothelin-1, administered i.v., were examined. Also, cardiac output, its distribution, tissue blood flows and vascular resistances were determined at both respiratory volumes in pithed rats given saline or during pressor responses to endothelin-1 (750 ng, i.v.). Finally, a comparison was made of the pressor responses to endothelin-1 in the blood perfused superior mesenteric arterial bed of pithed rats respired at 10 or 20 ml kg-1. 2. In control rats the systemic blood pressure responses to i.v. endothelin-1 were biphasic with an initial, transient (30 s) decrease in blood pressure followed by a well sustained pressor response. These responses were dose-dependent (the ED50 for the pressor response being 0.27 +/- 0.04 micrograms). The pressor effect of endothelin-1 was due to an increase in total peripheral resistance with no change in heart rate or cardiac output. This increased total peripheral resistance was due to vasoconstriction of the spleen, stomach, large intestine, small intestine and the pancreas/mesentery (in which it was most severe). Endothelin-1 also increased blood flow through the heart, lungs, liver, epididimides, fat and skin through redistribution of cardiac output to these vascular beds. 3. At the lower ventilation volume there was moderate acidosis, hypoxia and hypercapnia relative to those rats respired at 20 ml kg-1. With respiration at 10 ml kg-1, the pressor response to endothelin-1 was not sustained and, after oscillations in both blood pressure and heart rate, death occurred 15-20 min after administration. The pressor effect resulted from increases in cardiac output (due to increased stroke volume) and total peripheral resistance: the latter was caused by vasoconstriction in the stomach, small intestine, large intestine and pancreas/mesentery. Endothelin-1 increased blood flow through the heart, lungs, liver, kidneys, testes, fat and skin due to either an increase in cardiac output, redistribution of cardiac output or both. 4. Endothelin-1 induced dose-dependent pressor responses in the mesenteric bed in situ. At the lower ventilation volume the potency of endothelin-1 in this vascular bed was increased approximately two fold with the ED50 being 68 +/- 7 pmol compared to 113 +/- 15 pmol in the rats respired at 20 ml kg-1.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERGOFSKY E. H., LEHR D. E., FISHMAN A. P. The effect of changes in hydrogen ion concentration on the pulmonary circulation. J Clin Invest. 1962 Jul;41:1492–1502. doi: 10.1172/JCI104604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Mey J. G., Vanhoutte P. M. Anoxia and endothelium-dependent reactivity of the canine femoral artery. J Physiol. 1983 Feb;335:65–74. doi: 10.1113/jphysiol.1983.sp014519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Mey J. G., Vanhoutte P. M. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res. 1982 Oct;51(4):439–447. doi: 10.1161/01.res.51.4.439. [DOI] [PubMed] [Google Scholar]
- Detar R., Gellai M. Oxygen and isolated vascular smooth muscle from the main pulmonary artery of the rabbit. Am J Physiol. 1971 Dec;221(6):1791–1794. doi: 10.1152/ajplegacy.1971.221.6.1791. [DOI] [PubMed] [Google Scholar]
- Firth J. D., Ratcliffe P. J., Raine A. E., Ledingham J. G. Endothelin: an important factor in acute renal failure? Lancet. 1988 Nov 19;2(8621):1179–1182. doi: 10.1016/s0140-6736(88)90243-7. [DOI] [PubMed] [Google Scholar]
- Gillespie M. N., Owasoyo J. O., McMurtry I. F., O'Brien R. F. Sustained coronary vasoconstriction provoked by a peptidergic substance released from endothelial cells in culture. J Pharmacol Exp Ther. 1986 Feb;236(2):339–343. [PubMed] [Google Scholar]
- Han S. P., Trapani A. J., Fok K. F., Westfall T. C., Knuepfer M. M. Effects of endothelin on regional hemodynamics in conscious rats. Eur J Pharmacol. 1989 Jan 17;159(3):303–305. doi: 10.1016/0014-2999(89)90162-3. [DOI] [PubMed] [Google Scholar]
- Hickey K. A., Rubanyi G., Paul R. J., Highsmith R. F. Characterization of a coronary vasoconstrictor produced by cultured endothelial cells. Am J Physiol. 1985 May;248(5 Pt 1):C550–C556. doi: 10.1152/ajpcell.1985.248.5.C550. [DOI] [PubMed] [Google Scholar]
- Hiley C. R., Douglas S. A., Randall M. D. Pressor effects of endothelin-1 and some analogs in the perfused superior mesenteric arterial bed of the rat. J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S197–S199. doi: 10.1097/00005344-198900135-00055. [DOI] [PubMed] [Google Scholar]
- Hiley C. R., Nichols A. J., Wilson A. C. Effects of phenobarbitone and 6-methylprednisolone pretreatment on pressure/flow relations in the superior mesenteric and iliac arterial beds of the rat. J Pharm Pharmacol. 1985 Mar;37(3):164–169. doi: 10.1111/j.2042-7158.1985.tb05033.x. [DOI] [PubMed] [Google Scholar]
- Holden W. E., McCall E. Hypoxia-induced contractions of porcine pulmonary artery strips depend on intact endothelium. Exp Lung Res. 1984;7(2):101–112. doi: 10.3109/01902148409069671. [DOI] [PubMed] [Google Scholar]
- Hu J. R., Von Harsdorf R., Lang R. E. Endothelin has potent inotropic effects in rat atria. Eur J Pharmacol. 1988 Dec 13;158(3):275–278. doi: 10.1016/0014-2999(88)90079-9. [DOI] [PubMed] [Google Scholar]
- Iqbal A., Vanhoutte P. M. Flunarizine inhibits endothelium-dependent hypoxic facilitation in canine coronary arteries through an action on vascular smooth muscle. Br J Pharmacol. 1988 Nov;95(3):789–794. doi: 10.1111/j.1476-5381.1988.tb11706.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson E. K., Campbell W. B. The in situ blood perfused rat mesentery; a model for assessing modulation of adrenergic neurotransmission. Eur J Pharmacol. 1980 Aug 29;66(2-3):217–224. doi: 10.1016/0014-2999(80)90145-4. [DOI] [PubMed] [Google Scholar]
- MacLean M. R., Hiley C. R. Effect of artificial respiratory volume on the cardiovascular responses to an alpha 1- and an alpha 2-adrenoceptor agonist in the air-ventilated pithed rat. Br J Pharmacol. 1988 Apr;93(4):781–790. doi: 10.1111/j.1476-5381.1988.tb11463.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacLean M. R., Hiley C. R. Effects of enalapril on changes in cardiac output and organ vascular resistances induced by alpha 1- and alpha 2-adrenoceptor agonists in pithed normotensive rats. Br J Pharmacol. 1988 Jun;94(2):449–462. doi: 10.1111/j.1476-5381.1988.tb11547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDevitt D. G., Nies A. S. Simultaneous measurement of cardiac output and its distribution with microspheres in the rat. Cardiovasc Res. 1976 Jul;10(4):494–498. doi: 10.1093/cvr/10.4.494. [DOI] [PubMed] [Google Scholar]
- PRICE H. L., HELRICH M. The effect of cyclopropane, diethyl ether, nitrous oxide, thiopental, and hydrogen ion concentration on the myocardial dunction of the dog heart-lung preparation. J Pharmacol Exp Ther. 1955 Oct;115(2):206–216. [PubMed] [Google Scholar]
- Randall M. D., Douglas S. A., Hiley C. R. Vascular activities of endothelin-1 and some alanyl substituted analogues in resistance beds of the rat. Br J Pharmacol. 1989 Oct;98(2):685–699. doi: 10.1111/j.1476-5381.1989.tb12644.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Randall M. D., Hiley C. R. Detergent and methylene blue affect endothelium-dependent vasorelaxation and pressure/flow relations in rat blood perfused mesenteric arterial bed. Br J Pharmacol. 1988 Dec;95(4):1081–1088. doi: 10.1111/j.1476-5381.1988.tb11742.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubanyi G. M., Vanhoutte P. M. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol. 1985 Jul;364:45–56. doi: 10.1113/jphysiol.1985.sp015728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato T., Shirataka M., Ikeda N., Grodins F. S. Steady-state systems analysis of hepatic hemodynamics in the isolated perfused canine liver. Am J Physiol. 1977 Nov;233(5):R188–R197. doi: 10.1152/ajpregu.1977.233.5.R188. [DOI] [PubMed] [Google Scholar]
- Sonnenblick E. H., Kirk E. S. Effects of hypoxia and ischemia on myocardial contraction. Alterations in the time course of force and ischemia-dependent inhomogeneity of contractility. Cardiology. 1971;56(1):302–313. doi: 10.1159/000169374. [DOI] [PubMed] [Google Scholar]
- Walder C. E., Thomas G. R., Thiemermann C., Vane J. R. The hemodynamic effects of endothelin-1 in the pithed rat. J Cardiovasc Pharmacol. 1989;13 (Suppl 5):S93–S102. doi: 10.1097/00005344-198900135-00023. [DOI] [PubMed] [Google Scholar]
- Warner T. D., de Nucci G., Vane J. R. Rat endothelin is a vasodilator in the isolated perfused mesentery of the rat. Eur J Pharmacol. 1989 Jan 17;159(3):325–326. doi: 10.1016/0014-2999(89)90167-2. [DOI] [PubMed] [Google Scholar]
- Wright C. E., Fozard J. R. Regional vasodilation is a prominent feature of the haemodynamic response to endothelin in anaesthetized, spontaneously hypertensive rats. Eur J Pharmacol. 1988 Oct 11;155(1-2):201–203. doi: 10.1016/0014-2999(88)90425-6. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]
- de Jonge A., Knape J. T., van Meel J. C., Kalkman H. O., Wilffert B., Thoolen M. J., Timmermanns P. B., van Zwieten P. A. Effect of converting enzyme inhibition and angiotensin receptor blockade on the vasoconstriction mediated by alpha 1-and alpha 2-adrenoceptor stimulation in pithed normotensive rats. Naunyn Schmiedebergs Arch Pharmacol. 1982 Dec;321(4):309–313. doi: 10.1007/BF00498519. [DOI] [PubMed] [Google Scholar]
- de Nucci G., Thomas R., D'Orleans-Juste P., Antunes E., Walder C., Warner T. D., Vane J. R. Pressor effects of circulating endothelin are limited by its removal in the pulmonary circulation and by the release of prostacyclin and endothelium-derived relaxing factor. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9797–9800. doi: 10.1073/pnas.85.24.9797. [DOI] [PMC free article] [PubMed] [Google Scholar]