Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Nov;98(3):966–972. doi: 10.1111/j.1476-5381.1989.tb14627.x

Effects of changes in extra- and intracellular K+ on the endothelial production of prostacyclin.

J M Boeynaems 1, I Ramboer 1
PMCID: PMC1854770  PMID: 2511996

Abstract

1. Changes in the KCl concentration of the incubation medium, from 0 to 80 mM, had no effect on the basal or ATP-stimulated release of prostacyclin (PGI2) from bovine aortic endothelial cells. 2. The monovalent cation ionophores, valinomycin and nigericin (5 microM), enhanced the release of PGI2 from endothelial cells stimulated by ATP or bradykinin. 3. The action of nigericin, unlike that of valinomycin, was time-dependent, abolished in a high-KCl medium and associated with an increased efflux of 86Rb and a time-dependent depletion of intracellular K+. 4. Ouabain (1-100 microM) also enhanced the release of PGI2 in response to ATP and induced a significant depletion of intracellular K+ in bovine aortic endothelial cells. 5. In conclusion, modifications of the endothelial cell membrane potential, resulting from changes in the extracellular K+ concentration, do not modulate the basal or ATP-stimulated production of PGI2. An acute depletion of intracellular K+ by nigericin or ouabain enhances the production of PGI2 in aortic endothelial cells stimulated by ATP or bradykinin.

Full text

PDF
966

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booyse F. M., Sedlak B. J., Rafelson M. E., Jr Culture of arterial endothelial cells: characterization and growth of bovine aortic cells. Thromb Diath Haemorrh. 1975 Dec 15;34(3):825–839. [PubMed] [Google Scholar]
  2. Colden-Stanfield M., Schilling W. P., Ritchie A. K., Eskin S. G., Navarro L. T., Kunze D. L. Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ Res. 1987 Nov;61(5):632–640. doi: 10.1161/01.res.61.5.632. [DOI] [PubMed] [Google Scholar]
  3. Delafontaine P., Griendling K. K., Gimbrone M. A., Jr, Alexander R. W. Potassium depletion selectively inhibits sustained diacylglycerol formation from phosphatidylinositol in angiotensin II-stimulated, cultured vascular smooth muscle cells. J Biol Chem. 1987 Oct 25;262(30):14549–14554. [PubMed] [Google Scholar]
  4. Demolle D., Lecomte M., Boeynaems J. M. Pattern of protein phosphorylation in aortic endothelial cells. Modulation by adenine nucleotides and bradykinin. J Biol Chem. 1988 Dec 5;263(34):18459–18465. [PubMed] [Google Scholar]
  5. Felber S. M., Brand M. D. Valinomycin can depolarize mitochondria in intact lymphocytes without increasing plasma membrane potassium fluxes. FEBS Lett. 1982 Dec 13;150(1):122–124. doi: 10.1016/0014-5793(82)81317-3. [DOI] [PubMed] [Google Scholar]
  6. Fichtner H., Fröbe U., Busse R., Kohlhardt M. Single nonselective cation channels and Ca2+-activated K+ channels in aortic endothelial cells. J Membr Biol. 1987;98(2):125–133. doi: 10.1007/BF01872125. [DOI] [PubMed] [Google Scholar]
  7. Frangos J. A., Eskin S. G., McIntire L. V., Ives C. L. Flow effects on prostacyclin production by cultured human endothelial cells. Science. 1985 Mar 22;227(4693):1477–1479. doi: 10.1126/science.3883488. [DOI] [PubMed] [Google Scholar]
  8. Gerritsen M. E., Nganele D. M., Rodrigues A. M. Calcium ionophore (A23187)- and arachidonic acid-stimulated prostaglandin release from microvascular endothelial cells: effects of calcium antagonists and calmodulin inhibitors. J Pharmacol Exp Ther. 1987 Mar;240(3):837–846. [PubMed] [Google Scholar]
  9. Gordon J. L., Martin W. Endothelium-dependent relaxation of the pig aorta: relationship to stimulation of 86Rb efflux from isolated endothelial cells. Br J Pharmacol. 1983 Jun;79(2):531–541. doi: 10.1111/j.1476-5381.1983.tb11028.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hallam T. J., Pearson J. D. Exogenous ATP raises cytoplasmic free calcium in fura-2 loaded piglet aortic endothelial cells. FEBS Lett. 1986 Oct 20;207(1):95–99. doi: 10.1016/0014-5793(86)80019-9. [DOI] [PubMed] [Google Scholar]
  11. Kitazawa T., Somlyo A. P., Somlyo A. V. The effects of valinomycin on ion movements across the sarcoplasmic reticulum in frog muscle. J Physiol. 1984 May;350:253–268. doi: 10.1113/jphysiol.1984.sp015199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kovác L., Böhmerová E., Butko P. Ionophores and intact cells. I. Valinomycin and nigericin act preferentially on mitochondria and not on the plasma membrane of Saccharomyces cerevisiae. Biochim Biophys Acta. 1982 Dec 30;721(4):341–348. doi: 10.1016/0167-4889(82)90088-x. [DOI] [PubMed] [Google Scholar]
  13. Larkin J. M., Brown M. S., Goldstein J. L., Anderson R. G. Depletion of intracellular potassium arrests coated pit formation and receptor-mediated endocytosis in fibroblasts. Cell. 1983 May;33(1):273–285. doi: 10.1016/0092-8674(83)90356-2. [DOI] [PubMed] [Google Scholar]
  14. Larkin J. M., Donzell W. C., Anderson R. G. Potassium-dependent assembly of coated pits: new coated pits form as planar clathrin lattices. J Cell Biol. 1986 Dec;103(6 Pt 2):2619–2627. doi: 10.1083/jcb.103.6.2619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ledbetter M. L., Lubin M. Control of protein synthesis in human fibroblasts by intracellular potassium. Exp Cell Res. 1977 Mar 15;105(2):223–236. doi: 10.1016/0014-4827(77)90120-3. [DOI] [PubMed] [Google Scholar]
  16. Lopez-Rivas A., Adelberg E. A., Rozengurt E. Intracellular K+ and the mitogenic response of 3T3 cells to peptide factors in serum-free medium. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6275–6279. doi: 10.1073/pnas.79.20.6275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maclouf J. A radioimmunoassay for 6-keto-PGF1 alpha. Methods Enzymol. 1982;86:273–286. doi: 10.1016/0076-6879(82)86200-9. [DOI] [PubMed] [Google Scholar]
  18. Nakache M., Gaub H. E. Hydrodynamic hyperpolarization of endothelial cells. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1841–1843. doi: 10.1073/pnas.85.6.1841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakagawa M., Takamatsu H., Toyoda T., Sawada S., Tsuji H., Ijichi H. Effect of inhibition of Na+-K+ ATPase on the prostacyclin generation of cultured human vascular endothelial cells. Life Sci. 1987 Jan 26;40(4):351–357. doi: 10.1016/0024-3205(87)90136-6. [DOI] [PubMed] [Google Scholar]
  20. Needham L., Cusack N. J., Pearson J. D., Gordon J. L. Characteristics of the P2 purinoceptor that mediates prostacyclin production by pig aortic endothelial cells. Eur J Pharmacol. 1987 Feb 10;134(2):199–209. doi: 10.1016/0014-2999(87)90166-x. [DOI] [PubMed] [Google Scholar]
  21. Olesen S. P., Clapham D. E., Davies P. F. Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature. 1988 Jan 14;331(6152):168–170. doi: 10.1038/331168a0. [DOI] [PubMed] [Google Scholar]
  22. Olesen S. P., Davies P. F., Clapham D. E. Muscarinic-activated K+ current in bovine aortic endothelial cells. Circ Res. 1988 Jun;62(6):1059–1064. doi: 10.1161/01.res.62.6.1059. [DOI] [PubMed] [Google Scholar]
  23. Pearson J. D., Slakey L. L., Gordon J. L. Stimulation of prostaglandin production through purinoceptors on cultured porcine endothelial cells. Biochem J. 1983 Jul 15;214(1):273–276. doi: 10.1042/bj2140273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Penner R., Matthews G., Neher E. Regulation of calcium influx by second messengers in rat mast cells. Nature. 1988 Aug 11;334(6182):499–504. doi: 10.1038/334499a0. [DOI] [PubMed] [Google Scholar]
  25. Pirotton S., Raspe E., Demolle D., Erneux C., Boeynaems J. M. Involvement of inositol 1,4,5-trisphosphate and calcium in the action of adenine nucleotides on aortic endothelial cells. J Biol Chem. 1987 Dec 25;262(36):17461–17466. [PubMed] [Google Scholar]
  26. Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  27. Sauve R., Parent L., Simoneau C., Roy G. External ATP triggers a biphasic activation process of a calcium-dependent K+ channel in cultured bovine aortic endothelial cells. Pflugers Arch. 1988 Oct;412(5):469–481. doi: 10.1007/BF00582535. [DOI] [PubMed] [Google Scholar]
  28. Skaper S. D., Varon S. Nerve growth factor influences potassium movements in chick embryo dorsal root ganglionic cells. Exp Cell Res. 1981 Feb;131(2):353–361. doi: 10.1016/0014-4827(81)90238-x. [DOI] [PubMed] [Google Scholar]
  29. Van Coevorden A., Boeynaems J. M. Physiological concentrations of ADP stimulate the release of prostacyclin from bovine aortic endothelial cells. Prostaglandins. 1984 Apr;27(4):615–626. doi: 10.1016/0090-6980(84)90097-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES