Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Nov;98(3):773–780. doi: 10.1111/j.1476-5381.1989.tb14605.x

Effect of palytoxin on the calcium current and the mechanical activity of frog heart muscle.

M P Sauviat 1
PMCID: PMC1854776  PMID: 2574064

Abstract

1. The effect of palytoxin (PTX) on the Ca current (ICa) and the mechanical activity of frog atrial fibres was studied by use of the double sucrose gap voltage clamp technique. 2. In normal Ringer solution, PTX transiently increased the electrically-evoked peak tension which then decreased while a major contracture developed. PTX slowed the time course of the relaxation phase of the evoked tension. 3. Evidence is presented which suggests that the toxin also increased the entry of Ca and Sr via the Na-Ca exchange mechanism. It also induced the development of a Ca-dependent outward current which was inhibited by Sr. 4. In Na-free solution, PTX increased ICa and shifted the reversal potential for Ca towards more negative membrane potentials, thus suggesting that the internal Ca concentration had increased. Current-voltage, tension-voltage, time to peak-voltage and inactivation time constant-membrane potential curves were all shifted towards more negative membrane potentials in the presence of PTX. 5. These effects of PTX are similar to those caused by the increase in internal Ca concentration induced by Na ionophores by way of voltage-dependent Ca influx of the Na-Ca exchange mechanism.

Full text

PDF
773

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barcenas-Ruiz L., Beuckelmann D. J., Wier W. G. Sodium-calcium exchange in heart: membrane currents and changes in [Ca2+]i. Science. 1987 Dec 18;238(4834):1720–1722. doi: 10.1126/science.3686010. [DOI] [PubMed] [Google Scholar]
  2. Campbell D. T. Modified kinetics and selectivity of sodium channels in frog skeletal muscle fibers treated with aconitine. J Gen Physiol. 1982 Nov;80(5):713–731. doi: 10.1085/jgp.80.5.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chesnais J. M., Coraboeuf E., Sauviat M. P., Vassas J. M. Effets des ions H+, Li+ et Sr sur les courants transmembramaires des fibres atriales de Grenouille. C R Acad Sci Hebd Seances Acad Sci D. 1971 Jul 12;273(2):204–207. [PubMed] [Google Scholar]
  4. Dubois J. M., Cohen J. B. Effect of palytoxin on membrane and potential and current of frog myelinated fibers. J Pharmacol Exp Ther. 1977 Apr;201(1):148–145. [PubMed] [Google Scholar]
  5. Fischmeister R., Horackova M. Variation of intracellular Ca2+ following Ca2+ current in heart. A theoretical study of ionic diffusion inside a cylindrical cell. Biophys J. 1983 Mar;41(3):341–348. doi: 10.1016/S0006-3495(83)84445-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gautier P., Guiraudou P., Sauviat M. P. Electrophysiological effects of diclofurime on rabbit and frog atrial heart muscle. Br J Pharmacol. 1987 Apr;90(4):717–725. doi: 10.1111/j.1476-5381.1987.tb11225.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Horackova M., Vassort G. Calcium conductance in relation to contractility in frog myocardium. J Physiol. 1976 Aug;259(3):597–616. doi: 10.1113/jphysiol.1976.sp011485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Horackova M., Vassort G. Slow inward current and contraction in frog atrial muscle at various extracellular concentrations of Na and Ca ions. J Mol Cell Cardiol. 1979 Aug;11(8):733–753. doi: 10.1016/0022-2828(79)90400-0. [DOI] [PubMed] [Google Scholar]
  9. Huang L. Y., Moran N., Ehrenstein G. Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells. Proc Natl Acad Sci U S A. 1982 Mar;79(6):2082–2085. doi: 10.1073/pnas.79.6.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hume J. R., Uehara A. Properties of "creep currents" in single frog atrial cells. J Gen Physiol. 1986 Jun;87(6):833–855. doi: 10.1085/jgp.87.6.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ikeda M., Mitani K., Ito K. Palytoxin induces a nonselective cation channel in single ventricular cells of rat. Naunyn Schmiedebergs Arch Pharmacol. 1988 May;337(5):591–593. doi: 10.1007/BF00182738. [DOI] [PubMed] [Google Scholar]
  12. Ito K., Karaki H., Urakawa N. The mode of contractile action of palytoxin on vascular smooth muscle. Eur J Pharmacol. 1977 Nov 1;46(1):9–14. doi: 10.1016/0014-2999(77)90137-6. [DOI] [PubMed] [Google Scholar]
  13. McCleskey E. W., Fox A. P., Feldman D., Tsien R. W. Different types of calcium channels. J Exp Biol. 1986 Sep;124:177–190. doi: 10.1242/jeb.124.1.177. [DOI] [PubMed] [Google Scholar]
  14. McDonald T. F., Cavalié A., Trautwein W., Pelzer D. Voltage-dependent properties of macroscopic and elementary calcium channel currents in guinea pig ventricular myocytes. Pflugers Arch. 1986 May;406(5):437–448. doi: 10.1007/BF00583365. [DOI] [PubMed] [Google Scholar]
  15. Mentrard D., Vassort G., Fischmeister R. Calcium-mediated inactivation of the calcium conductance in cesium-loaded frog heart cells. J Gen Physiol. 1984 Jan;83(1):105–131. doi: 10.1085/jgp.83.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moore R. E., Scheuer P. J. Palytoxin: a new marine toxin from a coelenterate. Science. 1971 Apr 30;172(3982):495–498. doi: 10.1126/science.172.3982.495. [DOI] [PubMed] [Google Scholar]
  17. Mozhayeva G. N., Naumov A. P., Khodorov B. I. A study of properties of batrachotoxin modified sodium channels. Gen Physiol Biophys. 1986 Feb;5(1):17–46. [PubMed] [Google Scholar]
  18. Muramatsu I., Nishio M., Kigoshi S., Uemura D. Single ionic channels induced by palytoxin in guinea-pig ventricular myocytes. Br J Pharmacol. 1988 Apr;93(4):811–816. doi: 10.1111/j.1476-5381.1988.tb11466.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ozaki H., Nagase H., Karaki H., Urakawa N. Effects of palytoxin on contractile response and calcium movement in guinea-pig taenia coli. Comp Biochem Physiol C. 1987;86(2):387–393. doi: 10.1016/0742-8413(87)90101-0. [DOI] [PubMed] [Google Scholar]
  20. Ozaki H., Tomono J., Nagase H., Urakawa N. The mechanism of contractile action of palytoxin on vascular smooth muscle of guinea-pig aorta. Jpn J Pharmacol. 1983 Dec;33(6):1155–1162. doi: 10.1254/jjp.33.1155. [DOI] [PubMed] [Google Scholar]
  21. Pater C., Sauviat M. P. Effects of cadmium on the slow inward current of frog heart muscle in relation to a lowering of pH in external solution. Br J Pharmacol. 1988 Jun;94(2):469–474. doi: 10.1111/j.1476-5381.1988.tb11549.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pichon Y. Effects of palytoxin on sodium and potassium permeabilities in unmyelinated axons. Toxicon. 1982;20(1):41–47. doi: 10.1016/0041-0101(82)90141-6. [DOI] [PubMed] [Google Scholar]
  23. Potreau D., Richard S., Nargeot J., Raymond G. Tension activation and relaxation in frog atrial fibres. Evidence for direct effects of divalent cations (Ca2+, Sr2+, Ba2+) on contractile proteins and Na-Ca exchange. Pflugers Arch. 1987 Oct;410(3):326–334. doi: 10.1007/BF00580284. [DOI] [PubMed] [Google Scholar]
  24. Potreau D. Slow responses of frog myocardial fibres in sodium-free medium containing divalent cations. J Physiol (Paris) 1982;78(3):243–250. [PubMed] [Google Scholar]
  25. Rayner M. D., Sanders B. J., Harris S. M., Lin Y. C., Morton B. E. Palytoxin: effects on contractility and 45Ca2+ uptake in isolated ventricle strips. Res Commun Chem Pathol Pharmacol. 1975 May;11(1):55–64. [PubMed] [Google Scholar]
  26. Rougier O., Vassort G., Stämpfli R. Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;301(2):91–108. doi: 10.1007/BF00362729. [DOI] [PubMed] [Google Scholar]
  27. Roulet M. J., Mongo K. G., Vassort G., Ventura-Clapier R. The dependence of twitch relaxation on sodium ions and on internal Ca2+ stores in voltage clamped frog atrial fibres. Pflugers Arch. 1979 Apr 30;379(3):259–268. doi: 10.1007/BF00581430. [DOI] [PubMed] [Google Scholar]
  28. Sauviat M. P. Effects of ervatamine chlorhydrate on cardiac membrane currents in frog atrial fibres. Br J Pharmacol. 1980;71(1):41–49. doi: 10.1111/j.1476-5381.1980.tb10907.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sauviat M. P., Pater C., Berton J. Does palytoxin open a sodium-sensitive channel in cardiac muscle? Toxicon. 1987;25(7):695–704. doi: 10.1016/0041-0101(87)90119-x. [DOI] [PubMed] [Google Scholar]
  30. Sauviat M. P., Suchaud M. Effect of RP 30356 on the fast inward Na current in frog atrial fibres. Eur J Pharmacol. 1981 May 8;71(2-3):185–199. doi: 10.1016/0014-2999(81)90022-4. [DOI] [PubMed] [Google Scholar]
  31. Sheu S. S., Sharma V. K., Uglesity A. Na+-Ca2+ exchange contributes to increase of cytosolic Ca2+ concentration during depolarization in heart muscle. Am J Physiol. 1986 Apr;250(4 Pt 1):C651–C656. doi: 10.1152/ajpcell.1986.250.4.C651. [DOI] [PubMed] [Google Scholar]
  32. Siegelbaum S. A., Tsien R. W. Calcium-activated transient outward current in calf cardiac Purkinje fibres. J Physiol. 1980 Feb;299:485–506. doi: 10.1113/jphysiol.1980.sp013138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vassort G., Horackova M., Mongo K., Roulet M. J., Ventura-clapier R. Transmembrane calcium movements and excitation-contraction coupling in myocardial cells. Pathol Biol (Paris) 1979 Jan;27(1):21–29. [PubMed] [Google Scholar]
  34. Vassort G. Influence of sodium ions on the regulation of frog myocardial contractility. Pflugers Arch. 1973 Mar 30;339(3):224–240. doi: 10.1007/BF00587374. [DOI] [PubMed] [Google Scholar]
  35. Weidmann S. Effects of palytoxin on the electrical activity of dog and rabbit heart. Experientia. 1977 Nov 15;33(11):1487–1489. doi: 10.1007/BF01918825. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES