Abstract
1. The formation of an S-nitrosothiol compound, S-nitroso-N-acetylcysteine (SNAC) has recently been proposed to mediate the augmentation of the anti-aggregatory and haemodynamic effects of glyceryl trinitrate observed in the presence of N-acetylcysteine. This study investigated the effects on an isolated coronary artery preparation of acute and prolonged exposure to S-nitrosothiol compounds and nitric oxide (NO). 2. Single doses of NO and of the S-nitrosothiol compounds, SNAC and S-nitroso-N-acetyl-penicillamine (SNAP), induced rapid, but transient, relaxations in U46619-contracted bovine isolated coronary artery rings. Peak relaxation responses to SNAP and NO were attenuated in the presence of N-acetylcysteine, cysteine, ascorbic acid and methylene blue. The duration of the relaxation responses to SNAC was two to three times longer than those to SNAP and NO. In the presence of N-acetylcysteine (but not cysteine, ascorbic acid or methylene blue) the duration of the relaxation responses to SNAP and NO (but not to SNAC) was markedly increased. H.p.l.c. assay confirmed that, in the presence of N-acetylcysteine, SNAP and, to a lesser degree, NO were converted to the relatively more stable and longer acting vasodilator, SNAC. 3. When compared to control rings, coronary artery rings superfused with glyceryl trinitrate were subsequently markedly less responsive to the vasodilator actions of glyceryl trinitrate, whereas responsiveness to SNAC or NO was only marginally reduced. On the other hand, coronary artery rings superfused with SNAC or NO were subsequently less responsive to glyceryl trinitrate, SNAC and NO. Thus prolonged vascular exposure to SNAC or NO induced a form of tolerance different from that induced with glyceryl trinitrate and which is possibly associated with impaired guanylate cyclase activity. 4. Coronary artery rings superfused with NO were markedly less responsive to glyceryl trinitrate and NO, whereas responses to the endothelium-dependent vasodilator A23187 and to theophylline were not significantly attenuated. 5. It is concluded that formation of the more stable vasodilator SNAC occurs on incubation of N-acetylcysteine with SNAP or NO. While coronary artery responsiveness to SNAC and NO is virtually unchanged in the presence of glyceryl trinitrate-induced tolerance, after prolonged exposure to SNAC or NO tolerance may develop to these vasodilators with cross-tolerance to glyceryl trinitrate but not A23187. Thus, formation or therapeutic utilization of SNAC may acutely circumvent the problem of glyceryl trinitrate-induced tolerance but, during prolonged vascular exposure to SNAC, attenuation of vascular responsiveness may occur to a wide range of vasodilators.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrams J. Tolerance to organic nitrates. Circulation. 1986 Dec;74(6):1181–1185. doi: 10.1161/01.cir.74.6.1181. [DOI] [PubMed] [Google Scholar]
- Braughler J. M. Soluble guanylate cyclase activation by nitric oxide and its reversal. Involvement of sulfhydryl group oxidation and reduction. Biochem Pharmacol. 1983 Mar 1;32(5):811–818. doi: 10.1016/0006-2952(83)90581-6. [DOI] [PubMed] [Google Scholar]
- Brien J. F., McLaughlin B. E., Breedon T. H., Bennett B. M., Nakatsu K., Marks G. S. Biotransformation of glyceryl trinitrate occurs concurrently with relaxation of rabbit aorta. J Pharmacol Exp Ther. 1986 May;237(2):608–614. [PubMed] [Google Scholar]
- Dusting G. J., Read M. A., Stewart A. G. Endothelium-derived relaxing factor released from cultured cells: differentiation from nitric oxide. Clin Exp Pharmacol Physiol. 1988 Feb;15(2):83–92. doi: 10.1111/j.1440-1681.1988.tb01049.x. [DOI] [PubMed] [Google Scholar]
- Fung H. L., Chong S., Kowaluk E., Hough K., Kakemi M. Mechanisms for the pharmacologic interaction of organic nitrates with thiols. Existence of an extracellular pathway for the reversal of nitrate vascular tolerance by N-acetylcysteine. J Pharmacol Exp Ther. 1988 May;245(2):524–530. [PubMed] [Google Scholar]
- Furchgott R. F. The role of endothelium in the responses of vascular smooth muscle to drugs. Annu Rev Pharmacol Toxicol. 1984;24:175–197. doi: 10.1146/annurev.pa.24.040184.001135. [DOI] [PubMed] [Google Scholar]
- Henry P. J., Horowitz J. D., Louis W. J. Nitroglycerin-induced tolerance affects multiple sites in the organic nitrate bioconversion cascade. J Pharmacol Exp Ther. 1989 Feb;248(2):762–768. [PubMed] [Google Scholar]
- Horowitz J. D., Henry C. A., Syrjanen M. L., Louis W. J., Fish R. D., Smith T. W., Antman E. M. Combined use of nitroglycerin and N-acetylcysteine in the management of unstable angina pectoris. Circulation. 1988 Apr;77(4):787–794. doi: 10.1161/01.cir.77.4.787. [DOI] [PubMed] [Google Scholar]
- Horowitz J. D., Henry P. J. Recent developments in nitrate therapy of ischaemic heart disease. Med J Aust. 1987 Jan 19;146(2):93–96. doi: 10.5694/j.1326-5377.1987.tb136273.x. [DOI] [PubMed] [Google Scholar]
- Ignarro L. J., Buga G. M., Byrns R. E., Wood K. S., Chaudhuri G. Endothelium-derived relaxing factor and nitric oxide possess identical pharmacologic properties as relaxants of bovine arterial and venous smooth muscle. J Pharmacol Exp Ther. 1988 Jul;246(1):218–226. [PubMed] [Google Scholar]
- Ignarro L. J., Lippton H., Edwards J. C., Baricos W. H., Hyman A. L., Kadowitz P. J., Gruetter C. A. Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: evidence for the involvement of S-nitrosothiols as active intermediates. J Pharmacol Exp Ther. 1981 Sep;218(3):739–749. [PubMed] [Google Scholar]
- Keith R. A., Burkman A. M., Sokoloski T. D., Fertel R. H. Vascular tolerance to nitroglycerin and cyclic GMP generation in rat aortic smooth muscle. J Pharmacol Exp Ther. 1982 Jun;221(3):525–531. [PubMed] [Google Scholar]
- Kowaluk E. A., Poliszczuk R., Fung H. L. Tolerance to relaxation in rat aorta: comparison of an S-nitrosothiol with nitroglycerin. Eur J Pharmacol. 1987 Dec 15;144(3):379–383. doi: 10.1016/0014-2999(87)90392-x. [DOI] [PubMed] [Google Scholar]
- Levy W. S., Katz R. J., Ruffalo R. L., Leiboff R. H., Wasserman A. G. Potentiation of the hemodynamic effects of acutely administered nitroglycerin by methionine. Circulation. 1988 Sep;78(3):640–645. doi: 10.1161/01.cir.78.3.640. [DOI] [PubMed] [Google Scholar]
- Loscalzo J. N-Acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. J Clin Invest. 1985 Aug;76(2):703–708. doi: 10.1172/JCI112024. [DOI] [PMC free article] [PubMed] [Google Scholar]
- May D. C., Popma J. J., Black W. H., Schaefer S., Lee H. R., Levine B. D., Hillis L. D. In vivo induction and reversal of nitroglycerin tolerance in human coronary arteries. N Engl J Med. 1987 Sep 24;317(13):805–809. doi: 10.1056/NEJM198709243171305. [DOI] [PubMed] [Google Scholar]
- Murad F., Mittal C. K., Arnold W. P., Katsuki S., Kimura H. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res. 1978;9:145–158. [PubMed] [Google Scholar]
- Packer M., Lee W. H., Kessler P. D., Gottlieb S. S., Medina N., Yushak M. Prevention and reversal of nitrate tolerance in patients with congestive heart failure. N Engl J Med. 1987 Sep 24;317(13):799–804. doi: 10.1056/NEJM198709243171304. [DOI] [PubMed] [Google Scholar]
- Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
- Schröder H., Leitman D. C., Bennett B. M., Waldman S. A., Murad F. Glyceryl trinitrate-induced desensitization of guanylate cyclase in cultured rat lung fibroblasts. J Pharmacol Exp Ther. 1988 May;245(2):413–418. [PubMed] [Google Scholar]
- Shikano K., Ohlstein E. H., Berkowitz B. A. Differential selectivity of endothelium-derived relaxing factor and nitric oxide in smooth muscle. Br J Pharmacol. 1987 Nov;92(3):483–485. doi: 10.1111/j.1476-5381.1987.tb11347.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stamler J., Cunningham M., Loscalzo J. Reduced thiols and the effect of intravenous nitroglycerin on platelet aggregation. Am J Cardiol. 1988 Sep 1;62(7):377–380. doi: 10.1016/0002-9149(88)90962-9. [DOI] [PubMed] [Google Scholar]
- Vanhoutte P. M. Vascular physiology: the end of the quest? Nature. 1987 Jun 11;327(6122):459–460. doi: 10.1038/327459a0. [DOI] [PubMed] [Google Scholar]
- Wallenstein S., Zucker C. L., Fleiss J. L. Some statistical methods useful in circulation research. Circ Res. 1980 Jul;47(1):1–9. doi: 10.1161/01.res.47.1.1. [DOI] [PubMed] [Google Scholar]
