Abstract
1. The responsiveness to noradrenaline was characterized in cerebral arteries from the sheep, since this species was large enough to permit a comparison of arteries from different parts of the cerebral vasculature. 2. Noradrenaline caused contraction of the basilar artery, middle cerebral artery and small pial arteries by stimulation of alpha 1-adrenoceptors. 3. The maximum contraction to noradrenaline was small in the basilar artery (28% of the 5-hydroxytryptamine (5-HT) maximum) but larger in the middle cerebral artery (78% of the 5-HT maximum) and pial artery (92% of the 5-HT maximum) of the sheep. 4. Cocaine (10 microM) potentiated noradrenaline-induced contractions in the sheep middle cerebral artery but not in the sheep basilar artery. 5. The noradrenaline contraction, relative to the 5-HT contraction, was not affected by removal of the endothelium in either the sheep basilar or middle cerebral artery. 6. The results showed a variation within the sheep cerebral vasculature in the response to noradrenaline which cannot be explained by regional differences in alpha-adrenoceptor subtypes, noradrenaline uptake mechanisms or endothelial function.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Busija D. W., Leffler C. W. Exogenous norepinephrine constricts cerebral arterioles via alpha 2-adrenoceptors in newborn pigs. J Cereb Blood Flow Metab. 1987 Apr;7(2):184–188. doi: 10.1038/jcbfm.1987.42. [DOI] [PubMed] [Google Scholar]
- Chang J. Y., Hardebo J. E., Owman C. Differential vasomotor action of noradrenaline, serotonin, and histamine in isolated basilar artery from rat and guinea-pig. Acta Physiol Scand. 1988 Jan;132(1):91–102. doi: 10.1111/j.1748-1716.1988.tb08302.x. [DOI] [PubMed] [Google Scholar]
- Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
- Dahl E. The innervation of the cerebral arteries. J Anat. 1973 May;115(Pt 1):53–63. [PMC free article] [PubMed] [Google Scholar]
- Duckles S. P., Bevan J. A. Pharmacological characterization of adrenergic receptors of a rabbit cerebral artery in vitro. J Pharmacol Exp Ther. 1976 May;197(2):371–378. [PubMed] [Google Scholar]
- Ferron P. M., Banner W., Jr, Duckles S. P. Lack of specific (3H) prazosin binding sites in dog and rabbit cerebral arteries. Life Sci. 1984 Nov 19;35(21):2169–2176. doi: 10.1016/0024-3205(84)90518-6. [DOI] [PubMed] [Google Scholar]
- Harder D. R., Abel P. W., Hermsmeyer K. Membrane electrical mechanism of basilar artery constriction and pial artery dilation by norepinephrine. Circ Res. 1981 Dec;49(6):1237–1242. doi: 10.1161/01.res.49.6.1237. [DOI] [PubMed] [Google Scholar]
- Iwayama T., Furness J. B., Burnstock G. Dual adrenergic and cholinergic innervation of the cerebral arteries of the rat. An ultrastructural study. Circ Res. 1970 May;26(5):635–646. doi: 10.1161/01.res.26.5.635. [DOI] [PubMed] [Google Scholar]
- Laher I., Bevan J. A. Alpha adrenoceptor number limits response of some rabbit arteries to norepinephrine. J Pharmacol Exp Ther. 1985 May;233(2):290–297. [PubMed] [Google Scholar]
- Laher I., Bevan J. A. Evidence for functional alpha-adrenoceptors in rabbit basilar arteries. Eur J Pharmacol. 1985 Dec 10;119(1-2):17–21. doi: 10.1016/0014-2999(85)90316-4. [DOI] [PubMed] [Google Scholar]
- Nielsen K. C., Owman C. Contractile response and amine receptor mechanisms in isolated middle cerebral artery of the cat. Brain Res. 1971 Mar 19;27(1):33–42. doi: 10.1016/0006-8993(71)90370-2. [DOI] [PubMed] [Google Scholar]
- Sakakibara Y., Fujiwara M., Muramatsu I. Pharmacological characterization of the alpha adrenoceptors of the dog basilar artery. Naunyn Schmiedebergs Arch Pharmacol. 1982 Apr;319(1):1–7. doi: 10.1007/BF00491469. [DOI] [PubMed] [Google Scholar]
- Skärby T. V., Andersson K. E., Edvinsson L. Pharmacological characterization of postjunctional alpha-adrenoceptors in isolated feline cerebral and peripheral arteries. Acta Physiol Scand. 1983 Jan;117(1):63–73. doi: 10.1111/j.1748-1716.1983.tb07179.x. [DOI] [PubMed] [Google Scholar]
- Skärby T., Högestätt E. D., Andersson K. E. Influence of extracellular calcium and nifedipine on alpha 1- and alpha 2-adrenoceptor-mediated contractile responses in isolated rat and cat cerebral and mesenteric arteries. Acta Physiol Scand. 1985 Apr;123(4):445–456. doi: 10.1111/j.1748-1716.1985.tb07611.x. [DOI] [PubMed] [Google Scholar]
- Toda N., Fujita Y. Responsiveness of isolated cerebral and peripheral arteries to serotonin, norepinephrine, and transmural electrical stimulation. Circ Res. 1973 Jul;33(1):98–104. doi: 10.1161/01.res.33.1.98. [DOI] [PubMed] [Google Scholar]
- Toda N. Reactivity in human cerebral artery: species variation. Fed Proc. 1985 Feb;44(2):326–330. [PubMed] [Google Scholar]
- Tsukahara T., Taniguchi T., Fujiwara M., Handa H. Characterization of alpha adrenoceptors in pial arteries of the bovine brain. Naunyn Schmiedebergs Arch Pharmacol. 1983 Sep;324(2):88–93. doi: 10.1007/BF00497012. [DOI] [PubMed] [Google Scholar]
- Tsukahara T., Taniguchi T., Usui H., Miwa S., Shimohama S., Fujiwara M., Handa H. Sympathetic denervation and alpha adrenoceptors in dog cerebral arteries. Naunyn Schmiedebergs Arch Pharmacol. 1986 Dec;334(4):436–443. doi: 10.1007/BF00569383. [DOI] [PubMed] [Google Scholar]
- Usui H., Fujiwara M., Tsukahara T., Taniguchi T., Kurahashi K. Differences in contractile responses to electrical stimulation and alpha-adrenergic binding sites in isolated cerebral arteries of humans, cows, dogs, and monkeys. J Cardiovasc Pharmacol. 1985;7 (Suppl 3):S47–S52. doi: 10.1097/00005344-198500073-00006. [DOI] [PubMed] [Google Scholar]
- Usui H., Kurahashi K., Shirahase H., Fukui K., Fujiwara M. Endothelium-dependent vasocontraction in response to noradrenaline in the canine cerebral artery. Jpn J Pharmacol. 1987 Jun;44(2):228–231. doi: 10.1254/jjp.44.228. [DOI] [PubMed] [Google Scholar]