Abstract
1. [3H]-idazoxan labels a single population of high affinity sites (Kd 2.26 +/- 0.02 nM; Bmax 372 +/- 25 fmol mg-1 protein) in hamster adipocyte membranes. In the presence of 1 microM yohimbine to preclude binding to alpha 2-adrenoceptors, the density of [3H]-idazoxan binding sites was reduced (287 +/- 18 fmol mg-1 protein) without an apparent decrease in the affinity (Kd 2.19 +/- 0.24 nM) of the radioligand. 2. Displacement studies indicate that alpha-adrenoceptor ligands with an imidazoline side chain completely inhibit [3H]-idazoxan binding to hamster adipocyte membranes; in contrast, the alpha 2-adrenoceptor antagonists yohimbine, rauwolscine, BDF 6143 and phentolamine inhibited only 20-30% of the specific binding with affinity values consistent with an interaction at alpha 2-adrenoceptors. 3. The low potency of noradrenaline and adrenaline in displacing [3H]-idazoxan binding to the second site on hamster adipocyte membranes indicates that it is unlikely that this site is a type of adrenoceptor. 4. These results suggest that [3H]-idazoxan binds with high affinity to two sites in hamster adipocytes: an alpha 2-adrenoceptor and a non-adrenoceptor imidazoline site.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berlan M., Dang Tran L. Intervention de récepteurs adrénergiques alpha et bêta dans l'effet des catécholamines sur la lipolyse d'adipocytes de chien. J Physiol (Paris) 1978 Dec;74(6):601–608. [PubMed] [Google Scholar]
- Berlan M., Lafontan M. Identification of alpha 2-adrenergic receptors in human fat cell membranes by [3H]chlonidine binding. Eur J Pharmacol. 1980 Oct 31;67(4):481–484. doi: 10.1016/0014-2999(80)90191-0. [DOI] [PubMed] [Google Scholar]
- Berlan M., Lafontan M. The alpha 2-adrenergic receptor of human fat cells: comparative study of alpha 2-adrenergic radioligand binding and biological response. J Physiol (Paris) 1982;78(3):279–287. [PubMed] [Google Scholar]
- Boyajian C. L., Leslie F. M. Pharmacological evidence for alpha-2 adrenoceptor heterogeneity: differential binding properties of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther. 1987 Jun;241(3):1092–1098. [PubMed] [Google Scholar]
- Boyajian C. L., Loughlin S. E., Leslie F. M. Anatomical evidence for alpha-2 adrenoceptor heterogeneity: differential autoradiographic distributions of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther. 1987 Jun;241(3):1079–1091. [PubMed] [Google Scholar]
- Bricca G., Dontenwill M., Molines A., Feldman J., Belcourt A., Bousquet P. Evidence for the existence of a homogeneous population of imidazoline receptors in the human brainstem. Eur J Pharmacol. 1988 Jun 10;150(3):401–402. doi: 10.1016/0014-2999(88)90028-3. [DOI] [PubMed] [Google Scholar]
- Bricca G., Dontenwill M., Molines A., Feldman J., Belcourt A., Bousquet P. The imidazoline preferring receptor: binding studies in bovine, rat and human brainstem. Eur J Pharmacol. 1989 Mar 14;162(1):1–9. doi: 10.1016/0014-2999(89)90597-9. [DOI] [PubMed] [Google Scholar]
- Burkard W. P. Histamine H2-receptor binding with 3H-cimetidine in brain. Eur J Pharmacol. 1978 Aug 15;50(4):449–450. doi: 10.1016/0014-2999(78)90153-x. [DOI] [PubMed] [Google Scholar]
- Burns T. W., Langley P. E., Robison G. A. Adrenergic receptors and cyclic AMP in the regulation of human adipose tissue lipolysis. Ann N Y Acad Sci. 1971 Dec 30;185:115–128. doi: 10.1111/j.1749-6632.1971.tb45242.x. [DOI] [PubMed] [Google Scholar]
- Carpéné C., Lafontan M., Berlan M. A postsynaptic alpha 2-receptor: the alpha-adrenergic receptor of hamster white fat cells. Experientia. 1980 Dec 15;36(12):1413–1414. doi: 10.1007/BF01960132. [DOI] [PubMed] [Google Scholar]
- Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
- Coupry I., Podevin R. A., Dausse J. P., Parini A. Evidence for imidazoline binding sites in basolateral membranes from rabbit kidney. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1055–1060. doi: 10.1016/s0006-291x(87)80177-8. [DOI] [PubMed] [Google Scholar]
- Curtis-Prior P. B., Tan S. Application of agents active at the alpha 2-adrenoceptor of fat cells to the treatment of obesity--a critical appraisal. Int J Obes. 1984;8 (Suppl 1):201–213. [PubMed] [Google Scholar]
- Curtis-Prior P. B., Tan S. Regulation of adipose tissue metabolism via adrenergic mechanisms: actions of alpha-adrenoceptor agonists on lipolysis in hamster fat cells. Int J Obes. 1983;7(4):299–305. [PubMed] [Google Scholar]
- Ernsberger P., Meeley M. P., Mann J. J., Reis D. J. Clonidine binds to imidazole binding sites as well as alpha 2-adrenoceptors in the ventrolateral medulla. Eur J Pharmacol. 1987 Jan 28;134(1):1–13. doi: 10.1016/0014-2999(87)90125-7. [DOI] [PubMed] [Google Scholar]
- Fain J. N., Garcĩa-Sáinz J. A. Adrenergic regulation of adipocyte metabolism. J Lipid Res. 1983 Aug;24(8):945–966. [PubMed] [Google Scholar]
- García-Sínz J. A., Hoffman B. B., Li S. Y., Lefkowitz R. J., Fain J. N. Role of alpha 1 adrenoceptors in the turnover of phosphatidylinositol and of alpha 2 adrenoceptors in the regulation of cyclic AMP accumulation in hamster adipocytes. Life Sci. 1980 Sep 15;27(11):953–961. doi: 10.1016/0024-3205(80)90105-8. [DOI] [PubMed] [Google Scholar]
- Giudicelli Y., Pecquery R., Provin D., Agli B., Nordmann R. Regulation of lipolysis and cyclic AMP synthesis through energy supply in isolated human fat cells. Biochim Biophys Acta. 1977 Feb 23;486(2):385–398. doi: 10.1016/0005-2760(77)90035-2. [DOI] [PubMed] [Google Scholar]
- Hamilton C. A., Reid J. L., Yakubu M. A. [3H]yohimbine and [3H]idazoxan bind to different sites on rabbit forebrain and kidney membranes. Eur J Pharmacol. 1988 Feb 9;146(2-3):345–348. doi: 10.1016/0014-2999(88)90314-7. [DOI] [PubMed] [Google Scholar]
- Hittelman K. J., Wu C. F., Butcher R. W. Control of cyclic AMP levels in isolated fat cells from hamsters. Biochim Biophys Acta. 1973 Mar 30;304(1):188–196. doi: 10.1016/0304-4165(73)90127-x. [DOI] [PubMed] [Google Scholar]
- Huerta-Bahena J., Villalobos-Molina R., García-Sáinz J. A. Trifluoperazine and chlorpromazine antagonize alpha 1- but not alpha2- adrenergic effects. Mol Pharmacol. 1983 Jan;23(1):67–70. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lafontan M., Berlan M., Carpene C. Fat cell adrenoceptors: inter- and intraspecific differences and hormone regulation. Int J Obes. 1985;9 (Suppl 1):117–127. [PubMed] [Google Scholar]
- Lafontan M., Berlan M. Evidence for the alpha 2 nature of the alpha-adrenergic receptor inhibiting lipolysis in human fat cells. Eur J Pharmacol. 1980 Aug 22;66(1):87–93. doi: 10.1016/0014-2999(80)90298-8. [DOI] [PubMed] [Google Scholar]
- Lafontan M., Berlan M., Villeneuve A. Preponderance of alpha 2- over beta 1-adrenergic receptor sites in human fat cells is not predictive of the lipolytic effect of physiological catecholamines. J Lipid Res. 1983 Apr;24(4):429–440. [PubMed] [Google Scholar]
- Langin D., Lafontan M. [3H]idazoxan binding at non-alpha 2-adrenoceptors in rabbit adipocyte membranes. Eur J Pharmacol. 1989 Jan 10;159(2):199–203. doi: 10.1016/0014-2999(89)90707-3. [DOI] [PubMed] [Google Scholar]
- Meeley M. P., Ernsberger P. R., Granata A. R., Reis D. J. An endogenous clonidine-displacing substance from bovine brain: receptor binding and hypotensive actions in the ventrolateral medulla. Life Sci. 1986 Mar 24;38(12):1119–1126. doi: 10.1016/0024-3205(86)90248-1. [DOI] [PubMed] [Google Scholar]
- Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
- Pecquery R., Giudicelli Y. Heterogeneity and subcellular localization of hamster adipocyte alpha-adrenergic receptors: evidence of alpha 1- and alpha 2-subtypes. FEBS Lett. 1980 Jul 11;116(1):85–90. doi: 10.1016/0014-5793(80)80534-5. [DOI] [PubMed] [Google Scholar]
- Petrash A. C., Bylund D. B. Alpha-2 adrenergic receptor subtypes indicated by [3H]yohimbine binding in human brain. Life Sci. 1986 Jun 9;38(23):2129–2137. doi: 10.1016/0024-3205(86)90212-2. [DOI] [PubMed] [Google Scholar]
- RODBELL M. METABOLISM OF ISOLATED FAT CELLS. I. EFFECTS OF HORMONES ON GLUCOSE METABOLISM AND LIPOLYSIS. J Biol Chem. 1964 Feb;239:375–380. [PubMed] [Google Scholar]
- Richelsen B., Pedersen O. Alpha 2-adrenergic binding and action in human adipocytes. Comparison between binding to plasma membrane preparations and to intact adipocytes. Eur J Pharmacol. 1985 Dec 10;119(1-2):101–112. doi: 10.1016/0014-2999(85)90327-9. [DOI] [PubMed] [Google Scholar]
- Rising T. J., Norris D. B., Warrander S. E., Wood T. P. High affinity 3H-cimetidine binding in guinea-pig tissues. Life Sci. 1980 Jul 21;27(3):199–206. doi: 10.1016/0024-3205(80)90138-1. [DOI] [PubMed] [Google Scholar]
- Ruffolo R. R., Jr, Waddell J. E. Receptor interactions of imidazolines. IX. Cirazoline is an alpha-1 adrenergic agonist and an alpha-2 adrenergic antagonist. J Pharmacol Exp Ther. 1982 Jul;222(1):29–36. [PubMed] [Google Scholar]
- Subramanian N., Slotkin T. A. Solubilization of a [3H]cimetidine binding site from rat brains. A clonidine-sensitive H-2 receptor subtype? Mol Pharmacol. 1981 Sep;20(2):240–243. [PubMed] [Google Scholar]
- Sundin U., Fain J. N. Alpha 2-adrenergic inhibition of lipolysis and respiration in rat brown adipocytes. Biochem Pharmacol. 1983 Oct 15;32(20):3117–3120. doi: 10.1016/0006-2952(83)90259-9. [DOI] [PubMed] [Google Scholar]
- Tan S., Curtis-Prior P. B. Comparative effects of RX 781094, mianserin, yohimbine, rauwolscine and prazosin in reversing clonidine inhibition of MIX-stimulated lipolysis in hamster isolated white fat cells. Pharmacol Res Commun. 1984 May;16(5):461–466. doi: 10.1016/s0031-6989(84)80014-4. [DOI] [PubMed] [Google Scholar]
- Tan S., Curtis-Prior P. B. Prostaglandins, alpha-adrenergic receptors and lipolysis in hamster fat cells. Prostaglandins Leukot Med. 1985 Jan;17(1):117–123. doi: 10.1016/0262-1746(85)90040-x. [DOI] [PubMed] [Google Scholar]
- Tharp M. D., Hoffman B. B., Lefkowitz R. J. alpha-Adrenergic receptors in human adipocyte membranes: direct determination by [3H]yohimbine binding. J Clin Endocrinol Metab. 1981 Apr;52(4):709–714. doi: 10.1210/jcem-52-4-709. [DOI] [PubMed] [Google Scholar]
- Villeneuve A., Carpene C., Berlan M., Lafontan M. Lack of desensitization of alpha-2-mediated inhibition of lipolysis in fat cells after acute and chronic treatment with clonidine. J Pharmacol Exp Ther. 1985 May;233(2):433–440. [PubMed] [Google Scholar]
- Yablonsky F., Riffaud J. P., Lacolle J. Y., Dausse J. P. Evidence for non-adrenergic binding sites for [3H]idazoxan in the smooth muscle of rabbit urethra. Eur J Pharmacol. 1988 Sep 13;154(2):209–212. doi: 10.1016/0014-2999(88)90100-8. [DOI] [PubMed] [Google Scholar]
- van Meel J. C., de Jonge A., Timmermans P. B., van Zwieten P. A. Selectivity of some alpha adrenoceptor agonists for peripheral alpha-1 and alpha-2 adrenoceptors in the normotensive rat. J Pharmacol Exp Ther. 1981 Dec;219(3):760–767. [PubMed] [Google Scholar]
