Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1989 Dec;98(4):1261–1266. doi: 10.1111/j.1476-5381.1989.tb12672.x

Effects of okadaic acid on cytosolic calcium concentrations and on contractions of the porcine coronary artery.

K Hirano 1, H Kanaide 1, M Nakamura 1
PMCID: PMC1854834  PMID: 2611493

Abstract

1. We investigated the effects of okadaic acid (OA), a phosphatase inhibitor derived from a 38-carbon fatty acid and isolated from the black sponge, genus Halichondria, on cytosolic Ca2+ concentration ([Ca2+]i) and tension developed in porcine coronary arterial strips loaded with fura-2. 2. Both in the presence (1.25 mM) and absence of extracellular Ca2+, OA (over 10(-6) M) induced a concentration-dependent, slow and progressive increase in tension. Calcium removal had no effect on the maximum level of tension, time between application of the drug and the onset of tension, or the time required to reach the maximum tension. However, there was a slight concentration-dependent increase in [Ca2+]i, only in the presence of extracellular Ca2+. 3. At a lower concentration that did not cause contraction or increase [Ca2+]i, OA (10(-6) M) inhibited tension development but not the Ca2+ transient on readmission of Ca2+ in 118 mM K+-depolarizing solution. OA inhibited the maximum levels of the developed tension, without affecting the KD value (598 +/- 204 nM for control vs 678 +/- 464 nM after OA treatment) or the Hill coefficient (1.78 +/- 0.10 for control vs 1.98 +/- 0.47 for OA treatment). 4. It is concluded that high concentrations of OA induce a contraction independent of extracellular Ca2+ and without any changes in [Ca2+]i. Lower concentrations of OA inhibit the Ca2+-dependent contractions. The lack of effect on KD values suggests that the [Ca2+]i-sensitivity of the contractile apparatus is not affected by this inhibition of contraction.

Full text

PDF
1261

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bialojan C., Rüegg J. C., Takai A. Effects of okadaic acid on isometric tension and myosin phosphorylation of chemically skinned guinea-pig taenia coli. J Physiol. 1988 Apr;398:81–95. doi: 10.1113/jphysiol.1988.sp017030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bialojan C., Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988 Nov 15;256(1):283–290. doi: 10.1042/bj2560283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DiSalvo J., Gifford D., Jiang M. J. Properties and function of phosphatases from vascular smooth muscle. Fed Proc. 1983 Jan;42(1):67–71. [PubMed] [Google Scholar]
  4. Erdödi F., Rokolya A., Di Salvo J., Bárány M., Bárány K. Effect of okadaic acid on phosphorylation-dephosphorylation of myosin light chain in aortic smooth muscle homogenate. Biochem Biophys Res Commun. 1988 May 31;153(1):156–161. doi: 10.1016/s0006-291x(88)81202-6. [DOI] [PubMed] [Google Scholar]
  5. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  6. Godfraind T., Kaba A. Blockade or reversal of the contraction induced by calcium and adrenaline in depolarized arterial smooth muscle. Br J Pharmacol. 1969 Jul;36(3):549–560. doi: 10.1111/j.1476-5381.1969.tb08010.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  8. Haystead T. A., Sim A. T., Carling D., Honnor R. C., Tsukitani Y., Cohen P., Hardie D. G. Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism. Nature. 1989 Jan 5;337(6202):78–81. doi: 10.1038/337078a0. [DOI] [PubMed] [Google Scholar]
  9. Hescheler J., Mieskes G., Rüegg J. C., Takai A., Trautwein W. Effects of a protein phosphatase inhibitor, okadaic acid, on membrane currents of isolated guinea-pig cardiac myocytes. Pflugers Arch. 1988 Aug;412(3):248–252. doi: 10.1007/BF00582504. [DOI] [PubMed] [Google Scholar]
  10. Hesketh T. R., Smith G. A., Moore J. P., Taylor M. V., Metcalfe J. C. Free cytoplasmic calcium concentration and the mitogenic stimulation of lymphocytes. J Biol Chem. 1983 Apr 25;258(8):4876–4882. [PubMed] [Google Scholar]
  11. Ingebritsen T. S., Cohen P. The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur J Biochem. 1983 May 2;132(2):255–261. doi: 10.1111/j.1432-1033.1983.tb07357.x. [DOI] [PubMed] [Google Scholar]
  12. Issinger O. G., Martin T., Richter W. W., Olson M., Fujiki H. Hyperphosphorylation of N-60, a protein structurally and immunologically related to nucleolin after tumour-promoter treatment. EMBO J. 1988 Jun;7(6):1621–1626. doi: 10.1002/j.1460-2075.1988.tb02988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kamm K. E., Stull J. T. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol. 1985;25:593–620. doi: 10.1146/annurev.pa.25.040185.003113. [DOI] [PubMed] [Google Scholar]
  14. Kodama I., Kondo N., Shibata S. Electromechanical effects of okadaic acid isolated from black sponge in guinea-pig ventricular muscles. J Physiol. 1986 Sep;378:359–373. doi: 10.1113/jphysiol.1986.sp016224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murphy R. A., Herlihy J. T., Megerman J. Force-generating capacity and contractile protein content of arterial smooth muscle. J Gen Physiol. 1974 Dec;64(6):691–705. doi: 10.1085/jgp.64.6.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ozaki H., Ishihara H., Kohama K., Nonomura Y., Shibata S., Karaki H. Calcium-independent phosphorylation of smooth muscle myosin light chain by okadaic acid isolated from black sponge (Halichondria okadai). J Pharmacol Exp Ther. 1987 Dec;243(3):1167–1173. [PubMed] [Google Scholar]
  17. Ozaki H., Kohama K., Nonomura Y., Shibata S., Karaki H. Direct activation by okadaic acid of the contractile elements in the smooth muscle of guinea-pig taenia coli. Naunyn Schmiedebergs Arch Pharmacol. 1987 Mar;335(3):356–358. doi: 10.1007/BF00172811. [DOI] [PubMed] [Google Scholar]
  18. Rink T. J., Pozzan T. Using quin2 in cell suspensions. Cell Calcium. 1985 Apr;6(1-2):133–144. doi: 10.1016/0143-4160(85)90040-5. [DOI] [PubMed] [Google Scholar]
  19. Shibata S., Ishida Y., Kitano H., Ohizumi Y., Habon J., Tsukitani Y., Kikuchi H. Contractile effects of okadaic acid, a novel ionophore-like substance from black sponge, on isolated smooth muscles under the condition of Ca deficiency. J Pharmacol Exp Ther. 1982 Oct;223(1):135–143. [PubMed] [Google Scholar]
  20. Takai A., Bialojan C., Troschka M., Rüegg J. C. Smooth muscle myosin phosphatase inhibition and force enhancement by black sponge toxin. FEBS Lett. 1987 Jun 8;217(1):81–84. doi: 10.1016/0014-5793(87)81247-4. [DOI] [PubMed] [Google Scholar]
  21. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol. 1982 Aug;94(2):325–334. doi: 10.1083/jcb.94.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES